Browse Articles
Display Method:
Display Method: |
2025, 41(9): 1689-1701
doi: 10.11862/CJIC.20250007
Abstract:
含氟钙钛矿及其衍生物因其优异的物理和化学性质在新能源、光电器件、催化及磁性材料等领域获得了广泛关注。这类材料的合成方法是该研究领域的核心之一。合成路径的选择和优化直接影响材料的结构、性能、形貌以及在实际应用中的表现。目前, 含氟钙钛矿及其衍生物的合成方法主要包括传统的固相合成法、沉淀法、水热/溶剂热法、以及新兴的软化学合成法、沉积法等, 然而这些合成方法还没有系统的概述。因此, 本文综述了该系列化合物的合成方法, 总结了目前面临的挑战并对未来发展方向进行了展望, 期望以此推动该领域更深入、广泛的研究。
含氟钙钛矿及其衍生物因其优异的物理和化学性质在新能源、光电器件、催化及磁性材料等领域获得了广泛关注。这类材料的合成方法是该研究领域的核心之一。合成路径的选择和优化直接影响材料的结构、性能、形貌以及在实际应用中的表现。目前, 含氟钙钛矿及其衍生物的合成方法主要包括传统的固相合成法、沉淀法、水热/溶剂热法、以及新兴的软化学合成法、沉积法等, 然而这些合成方法还没有系统的概述。因此, 本文综述了该系列化合物的合成方法, 总结了目前面临的挑战并对未来发展方向进行了展望, 期望以此推动该领域更深入、广泛的研究。
2025, 41(9): 1719-1730
doi: 10.11862/CJIC.20250124
Abstract:
固体氧化物电池(SOCs)作为高效、清洁的能源转换装置, 能够实现化学能和电能的高效可逆转化, 在分布式发电、工业余热利用及低碳能源系统中展现出战略价值。然而, 传统电极材料中电催化活性与稳定性的相互制约、高温下的元素偏析与界面退化等问题, 严重限制了电池效率与使用寿命。近年来, 高熵工程通过高构型熵诱导的高熵效应、晶格畸变效应、迟滞扩散效应及鸡尾酒效应, 为突破电极材料性能瓶颈提供了新途径。本文综述了近年来报道的高熵SOC电极, 进一步阐述了高熵材料四大效应对SOC电极反应的催化活性、离子/电子传导能力及长期运行的结构稳定性的影响机制。基于此, 本文指出通过多主元设计实现界面反应动力学以及热-机械稳定性的协同提升是高熵SOC电极设计的关键。本文系统总结了高熵电极材料在提升SOC关键性能方面的研究进展, 突出了其在增强电极活性、抗毒化能力及热稳定性方面的潜力, 并就未来研究所面临的核心挑战与发展机遇进行了探讨。
固体氧化物电池(SOCs)作为高效、清洁的能源转换装置, 能够实现化学能和电能的高效可逆转化, 在分布式发电、工业余热利用及低碳能源系统中展现出战略价值。然而, 传统电极材料中电催化活性与稳定性的相互制约、高温下的元素偏析与界面退化等问题, 严重限制了电池效率与使用寿命。近年来, 高熵工程通过高构型熵诱导的高熵效应、晶格畸变效应、迟滞扩散效应及鸡尾酒效应, 为突破电极材料性能瓶颈提供了新途径。本文综述了近年来报道的高熵SOC电极, 进一步阐述了高熵材料四大效应对SOC电极反应的催化活性、离子/电子传导能力及长期运行的结构稳定性的影响机制。基于此, 本文指出通过多主元设计实现界面反应动力学以及热-机械稳定性的协同提升是高熵SOC电极设计的关键。本文系统总结了高熵电极材料在提升SOC关键性能方面的研究进展, 突出了其在增强电极活性、抗毒化能力及热稳定性方面的潜力, 并就未来研究所面临的核心挑战与发展机遇进行了探讨。
2025, 41(9): 1731-1754
doi: 10.11862/CJIC.20240412
Abstract:
激光技术是近年来一种应用广泛的合成技术, 具有一定的可控性、低接触性和低污染性, 其操作简单高效, 能够减少材料浪费和能源消耗, 降低对环境的影响。利用激光合成技术制备出的具有多孔结构的电化学功能材料在储能领域, 如光电催化、电池、超级电容器等方面, 有着良好的应用前景。激光合成技术的应用, 能够实现资源的高效利用和环境的可持续发展。本文综述了激光合成技术的原理及其在储能及生物传感方面的应用, 对激光的机遇与挑战进行了讨论。随着激光合成材料研究的持续深入, 其在能量存储领域的应用技术正迎来加速发展。
激光技术是近年来一种应用广泛的合成技术, 具有一定的可控性、低接触性和低污染性, 其操作简单高效, 能够减少材料浪费和能源消耗, 降低对环境的影响。利用激光合成技术制备出的具有多孔结构的电化学功能材料在储能领域, 如光电催化、电池、超级电容器等方面, 有着良好的应用前景。激光合成技术的应用, 能够实现资源的高效利用和环境的可持续发展。本文综述了激光合成技术的原理及其在储能及生物传感方面的应用, 对激光的机遇与挑战进行了讨论。随着激光合成材料研究的持续深入, 其在能量存储领域的应用技术正迎来加速发展。
2025, 41(9): 1702-1718
doi: 10.11862/CJIC.20240387
Abstract:
Malignant tumours always threaten human health. For tumour diagnosis, positron emission tomography (PET) is the most sensitive and advanced imaging technique by radiotracers, such as radioactive 18F, 11C, 64Cu, 68Ga, and 89Zr. Among the radiotracers, the radioactive 18F-labelled chemical agent as PET probes plays a predominant role in monitoring, detecting, treating, and predicting tumours due to its perfect half-life. In this paper, the 18F-labelled chemical materials as PET probes are systematically summarized. First, we introduce various radionuclides of PET and elaborate on the mechanism of PET imaging. It highlights the 18F-labelled chemical agents used as PET probes, including [18F]-2-deoxy-2-[18F]fluoro-D-glucose ([18F]-FDG), 18F-labelled amino acids, 18F-labelled nucleic acids, 18F-labelled receptors, 18F-labelled reporter genes, and 18F-labelled hypoxia agents. In addition, some PET probes with metal as a supplementary element are introduced briefly. Meanwhile, the 18F-labelled nanoparticles for the PET probe and the multi-modality imaging probe are summarized in detail. The approach and strategies for the fabrication of 18F-labelled PET probes are also described briefly. The future development of the PET probe is also prospected. The development and application of 18F-labelled PET probes will expand our knowledge and shed light on the diagnosis and theranostics of tumours.
Malignant tumours always threaten human health. For tumour diagnosis, positron emission tomography (PET) is the most sensitive and advanced imaging technique by radiotracers, such as radioactive 18F, 11C, 64Cu, 68Ga, and 89Zr. Among the radiotracers, the radioactive 18F-labelled chemical agent as PET probes plays a predominant role in monitoring, detecting, treating, and predicting tumours due to its perfect half-life. In this paper, the 18F-labelled chemical materials as PET probes are systematically summarized. First, we introduce various radionuclides of PET and elaborate on the mechanism of PET imaging. It highlights the 18F-labelled chemical agents used as PET probes, including [18F]-2-deoxy-2-[18F]fluoro-D-glucose ([18F]-FDG), 18F-labelled amino acids, 18F-labelled nucleic acids, 18F-labelled receptors, 18F-labelled reporter genes, and 18F-labelled hypoxia agents. In addition, some PET probes with metal as a supplementary element are introduced briefly. Meanwhile, the 18F-labelled nanoparticles for the PET probe and the multi-modality imaging probe are summarized in detail. The approach and strategies for the fabrication of 18F-labelled PET probes are also described briefly. The future development of the PET probe is also prospected. The development and application of 18F-labelled PET probes will expand our knowledge and shed light on the diagnosis and theranostics of tumours.
2025, 41(9): 1755-1764
doi: 10.11862/CJIC.20250198
Abstract:
用金属盐和硫脲前驱体溶液,通过刮涂工艺制备出Cu(In,Ga)S2半导体材料,并研究了Ga与Ga+In的物质的量浓度之比(GGI)对其对应太阳能电池性能的影响规律。结果表明,Cu(In,Ga)S2带隙随着GGI的增加而逐渐提高;较低的GGI能促进晶粒生长,有效提高器件的开路电压(VOC)和填充因子,但过高的GGI会阻碍晶粒生长,不利于器件性能的提升。在GGI=0.25时,Cu(In,Ga)S2的带隙达到1.69 eV,对应器件的光电转换效率达到9.06%,与未Ga合金化的器件相比提升了37.48%。进一步的研究表明Ga合金化有效降低了体相和界面缺陷浓度,改善了异质结界面质量,抑制了载流子复合。
用金属盐和硫脲前驱体溶液,通过刮涂工艺制备出Cu(In,Ga)S2半导体材料,并研究了Ga与Ga+In的物质的量浓度之比(GGI)对其对应太阳能电池性能的影响规律。结果表明,Cu(In,Ga)S2带隙随着GGI的增加而逐渐提高;较低的GGI能促进晶粒生长,有效提高器件的开路电压(VOC)和填充因子,但过高的GGI会阻碍晶粒生长,不利于器件性能的提升。在GGI=0.25时,Cu(In,Ga)S2的带隙达到1.69 eV,对应器件的光电转换效率达到9.06%,与未Ga合金化的器件相比提升了37.48%。进一步的研究表明Ga合金化有效降低了体相和界面缺陷浓度,改善了异质结界面质量,抑制了载流子复合。
2025, 41(9): 1765-1775
doi: 10.11862/CJIC.20250103
Abstract:
采用溶剂热法将BiOBr和NH2-MIL-101(Fe)复合制备了BiOBr/NH2-MIL-101(Fe)复合光催化剂,并将其用于光催化还原温室气体CO2。借助傅里叶变换红外光谱、X射线衍射、X射线光电子能谱、扫描电镜-能谱、紫外可见漫反射光谱、光致发光光谱、电化学阻抗谱对光催化剂的结构和性质进行了详细的表征。光催化CO2还原性能研究表明BiOBr/NH2-MIL-101(Fe)的活性明显优于纯BiOBr。当NH2-MIL-101(Fe)与BiOBr的物质的量之比为0.09时制备的复合催化剂活性最高,其在可见光照射下反应6 h后,在纯水体系中的CH3OH产率可达到49.68 μmol·g-1。BiOBr/NH2-MIL-101(Fe)异质结实现了低能载流子的快速消除和高能载流子的有效分离和富集,这使得其光催化还原CO2制备CH3OH的产率是纯BiOBr的2.94倍。该催化剂具有良好的循环使用性,经过5次循环后,产率仍可达到首次的84.9%。
采用溶剂热法将BiOBr和NH2-MIL-101(Fe)复合制备了BiOBr/NH2-MIL-101(Fe)复合光催化剂,并将其用于光催化还原温室气体CO2。借助傅里叶变换红外光谱、X射线衍射、X射线光电子能谱、扫描电镜-能谱、紫外可见漫反射光谱、光致发光光谱、电化学阻抗谱对光催化剂的结构和性质进行了详细的表征。光催化CO2还原性能研究表明BiOBr/NH2-MIL-101(Fe)的活性明显优于纯BiOBr。当NH2-MIL-101(Fe)与BiOBr的物质的量之比为0.09时制备的复合催化剂活性最高,其在可见光照射下反应6 h后,在纯水体系中的CH3OH产率可达到49.68 μmol·g-1。BiOBr/NH2-MIL-101(Fe)异质结实现了低能载流子的快速消除和高能载流子的有效分离和富集,这使得其光催化还原CO2制备CH3OH的产率是纯BiOBr的2.94倍。该催化剂具有良好的循环使用性,经过5次循环后,产率仍可达到首次的84.9%。
2025, 41(9): 1776-1788
doi: 10.11862/CJIC.20250102
Abstract:
基于第一性原理方法,通过在石墨烯中掺杂不同类型的氮(吡啶氮、吡咯氮、石墨氮)和负载铁单原子构建了Fe-N-C结构,并通过改变吡啶氮与铁单原子的配位数(x=3~6),研究了铁单原子、氮原子以及其旁边的碳原子分别作为活性位点时析氧反应(OER)和氧还原反应(ORR)的反应机理。结果表明,氮掺杂和铁单原子负载均有利于提高石墨烯的OER/ORR活性,但在Fe-N-C中石墨氮旁边的碳原子是最佳的OER活性位点,而与吡啶氮形成四配位结构的铁单原子是最佳的ORR活性位点。
基于第一性原理方法,通过在石墨烯中掺杂不同类型的氮(吡啶氮、吡咯氮、石墨氮)和负载铁单原子构建了Fe-N-C结构,并通过改变吡啶氮与铁单原子的配位数(x=3~6),研究了铁单原子、氮原子以及其旁边的碳原子分别作为活性位点时析氧反应(OER)和氧还原反应(ORR)的反应机理。结果表明,氮掺杂和铁单原子负载均有利于提高石墨烯的OER/ORR活性,但在Fe-N-C中石墨氮旁边的碳原子是最佳的OER活性位点,而与吡啶氮形成四配位结构的铁单原子是最佳的ORR活性位点。
2025, 41(9): 1789-1795
doi: 10.11862/CJIC.20250086
Abstract:
通过两步反应制备了一例吡啶鎓-查尔酮探针(1),并使用1H NMR和质谱表征了探针的结构。在富水溶液中,探针1的自身荧光微弱,而次氯酸根(ClO-)能够显著增强探针1在550 nm处的黄色荧光。探针1对ClO-的响应具有速度快(小于30 s)、灵敏度高(检测限为0.4 μmol·L-1)和斯托克斯位移大(130 nm)等优点。利用质谱和理论计算方法推测了ClO-介导的探针1的氧化-消除反应机理。此外,该探针成功用于活细胞线粒体和斑马鱼中ClO-的荧光成像。
通过两步反应制备了一例吡啶鎓-查尔酮探针(1),并使用1H NMR和质谱表征了探针的结构。在富水溶液中,探针1的自身荧光微弱,而次氯酸根(ClO-)能够显著增强探针1在550 nm处的黄色荧光。探针1对ClO-的响应具有速度快(小于30 s)、灵敏度高(检测限为0.4 μmol·L-1)和斯托克斯位移大(130 nm)等优点。利用质谱和理论计算方法推测了ClO-介导的探针1的氧化-消除反应机理。此外,该探针成功用于活细胞线粒体和斑马鱼中ClO-的荧光成像。
2025, 41(9): 1796-1804
doi: 10.11862/CJIC.20250033
Abstract:
通过溶剂热法合成了具有Z型异质结结构的MOF-74-Mn/g-C3N4光催化剂。在可见光照射下,其对四环素的降解率(60 min)达到95%,分别为MOF-74-Mn和g-C3N4的2.4倍和1.8倍。结果表明,MOF-74-Mn/g-C3N4 Z型异质结可有效地实现光生载流子的空间分离,抑制光生电子-空穴对的复合,加快载流子的传输,从而提升光催化降解性能。
通过溶剂热法合成了具有Z型异质结结构的MOF-74-Mn/g-C3N4光催化剂。在可见光照射下,其对四环素的降解率(60 min)达到95%,分别为MOF-74-Mn和g-C3N4的2.4倍和1.8倍。结果表明,MOF-74-Mn/g-C3N4 Z型异质结可有效地实现光生载流子的空间分离,抑制光生电子-空穴对的复合,加快载流子的传输,从而提升光催化降解性能。
2025, 41(9): 1805-1816
doi: 10.11862/CJIC.20250066
Abstract:
通过在TiO2电子传输层上引入甲基氯化胺(MACl)分子,对TiO2/CsPbBr3界面进行修饰,钝化TiO2/CsPbBr3存在的界面缺陷,同时提升CsPbBr3薄膜的结晶度和尺寸,从而提高载流子的传输效率。实验结果表明,采用5.0 mg·mL-1的MACl溶液进行修饰后,器件的最高开路电压(open-circuit voltage,VOC)达到1.58 V,短路电流密度(short circuit current density,JSC)达到7.89 mA·cm-2,同时填充因子(fill factor,FF)达到81.09%,光电转换效率(photoelectric conversion efficiency, PCE)达到10.10%的最优值。
通过在TiO2电子传输层上引入甲基氯化胺(MACl)分子,对TiO2/CsPbBr3界面进行修饰,钝化TiO2/CsPbBr3存在的界面缺陷,同时提升CsPbBr3薄膜的结晶度和尺寸,从而提高载流子的传输效率。实验结果表明,采用5.0 mg·mL-1的MACl溶液进行修饰后,器件的最高开路电压(open-circuit voltage,VOC)达到1.58 V,短路电流密度(short circuit current density,JSC)达到7.89 mA·cm-2,同时填充因子(fill factor,FF)达到81.09%,光电转换效率(photoelectric conversion efficiency, PCE)达到10.10%的最优值。
2025, 41(9): 1817-1826
doi: 10.11862/CJIC.20250058
Abstract:
作为乳腺癌细胞的潜在生物标志物,脂肪酶的高灵敏检测有利于提高疾病诊断的准确性。基于脂肪酶的界面催化特性,我们设计合成了一种脂肪酶特异性响应的聚集诱导发光(AIE)荧光探针BTPA,该探针在磷酸盐缓冲溶液中可以发生聚集并与外界溶液形成微小界面,这些界面可快速激活脂肪酶的活性,从而导致BTPA被水解并发出强烈的黄色荧光。在5.0×10-5~4.5×10-4 U·mL-1范围内,BTPA的荧光发射强度与脂肪酶的活性呈线性相关,检出限为4.94×10-6 U·mL-1。此外,探针对脂肪酶的选择性和抗干扰性实验表明探针可用于复杂生物体内的荧光成像。细胞成像实验结果表明,该荧光探针可以精确地原位识别乳腺癌细胞并发出强烈的荧光。
作为乳腺癌细胞的潜在生物标志物,脂肪酶的高灵敏检测有利于提高疾病诊断的准确性。基于脂肪酶的界面催化特性,我们设计合成了一种脂肪酶特异性响应的聚集诱导发光(AIE)荧光探针BTPA,该探针在磷酸盐缓冲溶液中可以发生聚集并与外界溶液形成微小界面,这些界面可快速激活脂肪酶的活性,从而导致BTPA被水解并发出强烈的黄色荧光。在5.0×10-5~4.5×10-4 U·mL-1范围内,BTPA的荧光发射强度与脂肪酶的活性呈线性相关,检出限为4.94×10-6 U·mL-1。此外,探针对脂肪酶的选择性和抗干扰性实验表明探针可用于复杂生物体内的荧光成像。细胞成像实验结果表明,该荧光探针可以精确地原位识别乳腺癌细胞并发出强烈的荧光。
2025, 41(9): 1827-1839
doi: 10.11862/CJIC.20240460
Abstract:
采用2种密度泛函方法对C6S6Li6储氢性能进行了理论研究。C6S6Li6动力学稳定,最多可吸附38个H2分子,储氢密度可达20.213%。C6S6Li6(H2)38的平均吸附能接近温和条件下可逆吸附氢气的标准(0.1~0.8 eV)。各种波函数分析表明,C6S6Li6中Li的2s→2p电子跃迁和各带电原子的电场极化共同主导了C6S6Li6对H2的范德瓦耳斯作用。热化学计算表明,在77 K下,压力为0.1、2.5、5.0 MPa时,C6S6Li6分别自发吸附6、32、38个H2分子,并且在298.15 K能够完全释放,可逆储氢密度分别为3.846%、17.582%和20.213%。原子密度矩阵传播动力学模拟表明,C6S6Li6(H2)38中被吸附的H2分子大多可以在室温下脱附,并且母体结构保持稳定,不会坍塌。二聚体(C6S6Li6)2能够吸附53个H2分子,储氢密度为15.014%,也适合在温和条件下可逆储氢。
采用2种密度泛函方法对C6S6Li6储氢性能进行了理论研究。C6S6Li6动力学稳定,最多可吸附38个H2分子,储氢密度可达20.213%。C6S6Li6(H2)38的平均吸附能接近温和条件下可逆吸附氢气的标准(0.1~0.8 eV)。各种波函数分析表明,C6S6Li6中Li的2s→2p电子跃迁和各带电原子的电场极化共同主导了C6S6Li6对H2的范德瓦耳斯作用。热化学计算表明,在77 K下,压力为0.1、2.5、5.0 MPa时,C6S6Li6分别自发吸附6、32、38个H2分子,并且在298.15 K能够完全释放,可逆储氢密度分别为3.846%、17.582%和20.213%。原子密度矩阵传播动力学模拟表明,C6S6Li6(H2)38中被吸附的H2分子大多可以在室温下脱附,并且母体结构保持稳定,不会坍塌。二聚体(C6S6Li6)2能够吸附53个H2分子,储氢密度为15.014%,也适合在温和条件下可逆储氢。
2025, 41(9): 1840-1850
doi: 10.11862/CJIC.20250136
Abstract:
Reaction of the non-substituted/substituted unsymmetric pinene-derived complex [Pt(N^C^N′)Cl] with the aryl isocyanide 2,6-dimethylphenyl isocyanide (CNXyl) afforded a mixture of two isomeric species: the ionic complex [Pt(κ3-N^C^N′)(CNXyl)]Cl ([A]Cl) and the molecular complex [Pt(κ2-N^C^N′)(CNXyl)Cl] (B). Isomer B was almost the dominating product. The structures of the isomer B derivatives bearing —CF3 and —Cl substituents on the pyridine ring of the pinene moiety (5B and 7B, respectively) have been confirmed by single-crystal X-ray diffraction, revealing a slightly distorted square planar geometry with trans-NN^C^N′, CNR configuration (The terminal N atom of the κ2-N^C^N′ ligand is trans to the isocyanide ligand CNXyl.). Isomer B is thermodynamically more stable, as confirmed by theoretical calculations.
Reaction of the non-substituted/substituted unsymmetric pinene-derived complex [Pt(N^C^N′)Cl] with the aryl isocyanide 2,6-dimethylphenyl isocyanide (CNXyl) afforded a mixture of two isomeric species: the ionic complex [Pt(κ3-N^C^N′)(CNXyl)]Cl ([A]Cl) and the molecular complex [Pt(κ2-N^C^N′)(CNXyl)Cl] (B). Isomer B was almost the dominating product. The structures of the isomer B derivatives bearing —CF3 and —Cl substituents on the pyridine ring of the pinene moiety (5B and 7B, respectively) have been confirmed by single-crystal X-ray diffraction, revealing a slightly distorted square planar geometry with trans-NN^C^N′, CNR configuration (The terminal N atom of the κ2-N^C^N′ ligand is trans to the isocyanide ligand CNXyl.). Isomer B is thermodynamically more stable, as confirmed by theoretical calculations.
2025, 41(9): 1851-1858
doi: 10.11862/CJIC.20250131
Abstract:
To extend a new family of aminophosphine-coordinated [FeFe]-hydrogenase mimics for catalytic hydrogen (H2) evolution, we carried out the ligand substitutions of diiron hexacarbonyl precursors [Fe2(μ-X2pdt)(CO)6] (X2pdt=(SCH2)2CX2, X=Me, H) with aminodiphosphines (Ph2PCH2)2NY(Y=(CH2)2OH, (CH2)3OH) to obtain two new diiron aminophosphine complexes [Fe2(L1)(μ-Me2pdt)(CO)5] (1) and [Fe2(L2)(μ-H2pdt)(CO)5] (2), where L1=3-[(diphenylphosphaneyl)methyl]oxazolidine, L2=3-[(diphenylphosphaneyl)methyl]-1, 3-oxazinane. Moreover, the structures of 1 and 2 have been fully confirmed by elemental analysis, spectroscopic techniques, and single-crystal X-ray diffraction. Using cyclic voltammetry (CV), we investigated the electrochemical redox performance and proton reduction activities of 1 and 2 in acetic acid (HOAc). The CV study indicates that diiron aminophosphine complexes 1 and 2 can be considered to be hydrogenase-inspired diiron molecular electrocatalysts for the reduction of protons into H2 generation in the presence of HOAc.
To extend a new family of aminophosphine-coordinated [FeFe]-hydrogenase mimics for catalytic hydrogen (H2) evolution, we carried out the ligand substitutions of diiron hexacarbonyl precursors [Fe2(μ-X2pdt)(CO)6] (X2pdt=(SCH2)2CX2, X=Me, H) with aminodiphosphines (Ph2PCH2)2NY(Y=(CH2)2OH, (CH2)3OH) to obtain two new diiron aminophosphine complexes [Fe2(L1)(μ-Me2pdt)(CO)5] (1) and [Fe2(L2)(μ-H2pdt)(CO)5] (2), where L1=3-[(diphenylphosphaneyl)methyl]oxazolidine, L2=3-[(diphenylphosphaneyl)methyl]-1, 3-oxazinane. Moreover, the structures of 1 and 2 have been fully confirmed by elemental analysis, spectroscopic techniques, and single-crystal X-ray diffraction. Using cyclic voltammetry (CV), we investigated the electrochemical redox performance and proton reduction activities of 1 and 2 in acetic acid (HOAc). The CV study indicates that diiron aminophosphine complexes 1 and 2 can be considered to be hydrogenase-inspired diiron molecular electrocatalysts for the reduction of protons into H2 generation in the presence of HOAc.
2025, 41(9): 1859-1866
doi: 10.11862/CJIC.20250128
Abstract:
Luminescence thermometry has attracted more and more attention due to its non-contact and noninvasive operation, fast response, high spatial resolution, and so on, for which the luminescent thermometers are the key. Here, a 1D complex [Tb4(HTC4A)(TC4A)(OBBA)2(CH3OH)4(μ4-OH)]n (1) was obtained by solvothermal synthesis, where H4TC4A=p-tert-butylthiacalix[4 ]arene, and H2OBBA=4, 4′-oxybisbenzoic acid. This complex is featured with a chain-like polymer constructed by bridging some sandwich-like Tb4-(TC4A)2 entities through OBBA2- ligands. It exhibited the characteristic emission of the Tb3+ ion. Both fluorescence intensity and lifetime decreased with increasing temperature. The relative sensitivity was up to 8.743%·K-1 at 473 K, indicating it is a good ratiometric luminescent thermometer. This complex had good stability under different pH values and in common solvents.
Luminescence thermometry has attracted more and more attention due to its non-contact and noninvasive operation, fast response, high spatial resolution, and so on, for which the luminescent thermometers are the key. Here, a 1D complex [Tb4(HTC4A)(TC4A)(OBBA)2(CH3OH)4(μ4-OH)]n (1) was obtained by solvothermal synthesis, where H4TC4A=p-tert-butylthiacalix[
2025, 41(9): 1867-1877
doi: 10.11862/CJIC.20250100
Abstract:
Two Gd2 complexes, namely [Gd2(dbm)2(HL1)2(CH3OH)2]·4CH3OH (1) and [Gd2(dbm)2(L2)2(CH3OH)2]·2CH3OH (2), where H3L1=(Z)-N′-[4-(diethylamino)-2-hydroxybenzylidene]-2-hydroxyacetohydrazide, H2L2=(E)-N′- (5-bromo-2-hydroxy-3-methoxybenzylidene)nicotinohydrazide, Hdbm=dibenzoylmethane, have been constructed by adopting the solvothermal method. Structural characterization unveils that both complexes 1 and 2 are constituted by two Gd3+ ions, two dbm- ions, two CH3OH molecules, and two polydentate Schiff-base ligands (HL12- or L22-). In addition, complex 1 contains four free methanol molecules, whereas complex 2 harbors two free methanol molecules. By investigating the interactions between complexes 1 and 2 and four types of bacteria (Bacillus subtilis, Escherichia coli, Staphylococcus aureus, Candida albicans), it was found that both complexes 1 and 2 exhibited potent antibacterial activities. The interaction mechanisms between the ligands H3L1, H2L2, complexes 1 and 2, and calf thymus DNA (CT-DNA) were studied using ultraviolet-visible spectroscopy, fluorescence titration, and cyclic voltammetry. The results demonstrated that both complexes 1 and 2 can intercalate into CT-DNA molecules, thereby inhibiting bacterial proliferation to achieve the antibacterial effects.
Two Gd2 complexes, namely [Gd2(dbm)2(HL1)2(CH3OH)2]·4CH3OH (1) and [Gd2(dbm)2(L2)2(CH3OH)2]·2CH3OH (2), where H3L1=(Z)-N′-[4-(diethylamino)-2-hydroxybenzylidene]-2-hydroxyacetohydrazide, H2L2=(E)-N′- (5-bromo-2-hydroxy-3-methoxybenzylidene)nicotinohydrazide, Hdbm=dibenzoylmethane, have been constructed by adopting the solvothermal method. Structural characterization unveils that both complexes 1 and 2 are constituted by two Gd3+ ions, two dbm- ions, two CH3OH molecules, and two polydentate Schiff-base ligands (HL12- or L22-). In addition, complex 1 contains four free methanol molecules, whereas complex 2 harbors two free methanol molecules. By investigating the interactions between complexes 1 and 2 and four types of bacteria (Bacillus subtilis, Escherichia coli, Staphylococcus aureus, Candida albicans), it was found that both complexes 1 and 2 exhibited potent antibacterial activities. The interaction mechanisms between the ligands H3L1, H2L2, complexes 1 and 2, and calf thymus DNA (CT-DNA) were studied using ultraviolet-visible spectroscopy, fluorescence titration, and cyclic voltammetry. The results demonstrated that both complexes 1 and 2 can intercalate into CT-DNA molecules, thereby inhibiting bacterial proliferation to achieve the antibacterial effects.
2025, 41(9): 1878-1888
doi: 10.11862/CJIC.20250079
Abstract:
A Co3O4/BiOBr heterojunction was synthesized via a facile one-step solvothermal method for highly selective photocatalytic CO2 reduction. The optimized Co3O4/BiOBr-0.8 catalyst exhibited CO and CH4 evolution rates of 112.2 and 5.5 μmol·g-1·h-1, respectively, representing 6.3-fold and 3.9-fold enhancements over pristine BiOBr. The heterojunction demonstrated broadened light absorption, enhanced photoelectrochemical activity, reduced charge-transfer resistance, and improved separation efficiency of photogenerated carriers (e-/h+). These synergistic effects were attributed to the formation of a Z-scheme heterostructure, which facilitated solar energy utilization and electron reduction capacity while suppressing carrier recombination.
A Co3O4/BiOBr heterojunction was synthesized via a facile one-step solvothermal method for highly selective photocatalytic CO2 reduction. The optimized Co3O4/BiOBr-0.8 catalyst exhibited CO and CH4 evolution rates of 112.2 and 5.5 μmol·g-1·h-1, respectively, representing 6.3-fold and 3.9-fold enhancements over pristine BiOBr. The heterojunction demonstrated broadened light absorption, enhanced photoelectrochemical activity, reduced charge-transfer resistance, and improved separation efficiency of photogenerated carriers (e-/h+). These synergistic effects were attributed to the formation of a Z-scheme heterostructure, which facilitated solar energy utilization and electron reduction capacity while suppressing carrier recombination.
2025, 41(9): 1889-1902
doi: 10.11862/CJIC.20250097
Abstract:
A cobalt-based metal-organic framework [Co3(L)2(1, 4-bib)4]·4H2O (Co-MOF) was prepared using 5-[(4-carboxyphenoxy)methyl]isophthalic acid (H3L) and 1, 4-bis(1H-imidazol-1-yl)benzene (1, 4-bib) as ligands. Then, an electrochemical sensor modified with Co-MOF on a glassy carbon electrode (Co-MOF@GCE) was constructed for detecting Cd2+ and Pb2+ in aqueous solutions. The sensor exhibited a linear range of 1.0-16.0 μmol·L-1 with a detection limit (LOD) of 4.609 nmol·L-1 for Cd2+, and 0.5-10.0 μmol·L-1 with an LOD of 1.307 nmol·L-1 for Pb2+. Simultaneous detection of both ions within 0.5-7.0 μmol·L-1 achieved LOD values of 0.47 nmol·L-1 (Cd2+) and 0.008 nmol·L-1 (Pb2+), respectively. Analysis of real water samples (tap water, mineral water, and river water) yielded recoveries of 95%-105%, validating practical applicability. Density functional theory (DFT) calculations reveal that synergistic interactions between cobalt centers and N/O atoms enhance adsorption and electron-transfer efficiency. CCDC: 2160744.
A cobalt-based metal-organic framework [Co3(L)2(1, 4-bib)4]·4H2O (Co-MOF) was prepared using 5-[(4-carboxyphenoxy)methyl]isophthalic acid (H3L) and 1, 4-bis(1H-imidazol-1-yl)benzene (1, 4-bib) as ligands. Then, an electrochemical sensor modified with Co-MOF on a glassy carbon electrode (Co-MOF@GCE) was constructed for detecting Cd2+ and Pb2+ in aqueous solutions. The sensor exhibited a linear range of 1.0-16.0 μmol·L-1 with a detection limit (LOD) of 4.609 nmol·L-1 for Cd2+, and 0.5-10.0 μmol·L-1 with an LOD of 1.307 nmol·L-1 for Pb2+. Simultaneous detection of both ions within 0.5-7.0 μmol·L-1 achieved LOD values of 0.47 nmol·L-1 (Cd2+) and 0.008 nmol·L-1 (Pb2+), respectively. Analysis of real water samples (tap water, mineral water, and river water) yielded recoveries of 95%-105%, validating practical applicability. Density functional theory (DFT) calculations reveal that synergistic interactions between cobalt centers and N/O atoms enhance adsorption and electron-transfer efficiency. CCDC: 2160744.
2025, 41(9): 1903-1915
doi: 10.11862/CJIC.20250026
Abstract:
Herein, copper nanoclusters (Cu NCs) were synthesized in aqueous solution through a chemical reduction method using polyethyleneimine as reducing agent and protective ligand, with Cu(NO3)2 as copper source. Subsequently, composite fluorescent nanoparticles, chitosan-functionalized silica nanoparticles (CSNPs)-coated Cu NCs (Cu NCs/CSNPs), were synthesized via a reverse microemulsion method. Compared with Cu NCs, the composite Cu NCs/CSNPs exhibited an increased quantum yield and enhanced fluorescence sensing performance. Based on the composite Cu NCs/CSNPs, a fluorescence method for the detection of cefixime fluorescence quenching was established. The technique was simple, sensitive, and selective for detecting cefixime. The fluorescence quenching efficiency of Cu NCs/CSNPs was linearly related to the concentration of cefixime in the range of 3.98-38.5 μmol·L-1 (1.81-17.46 mg·L-1), with a limit of detection of 0.045 5 μmol·L-1 (20.6 μg·L-1).
Herein, copper nanoclusters (Cu NCs) were synthesized in aqueous solution through a chemical reduction method using polyethyleneimine as reducing agent and protective ligand, with Cu(NO3)2 as copper source. Subsequently, composite fluorescent nanoparticles, chitosan-functionalized silica nanoparticles (CSNPs)-coated Cu NCs (Cu NCs/CSNPs), were synthesized via a reverse microemulsion method. Compared with Cu NCs, the composite Cu NCs/CSNPs exhibited an increased quantum yield and enhanced fluorescence sensing performance. Based on the composite Cu NCs/CSNPs, a fluorescence method for the detection of cefixime fluorescence quenching was established. The technique was simple, sensitive, and selective for detecting cefixime. The fluorescence quenching efficiency of Cu NCs/CSNPs was linearly related to the concentration of cefixime in the range of 3.98-38.5 μmol·L-1 (1.81-17.46 mg·L-1), with a limit of detection of 0.045 5 μmol·L-1 (20.6 μg·L-1).
2025, 41(9): 1916-1926
doi: 10.11862/CJIC.20240442
Abstract:
Herein, an FMS/CC composite was successfully fabricated by depositing FeMoS4 onto a pristine carbon fiber cloth (CC) substrate via a facile two-step hydrothermal method. The amorphous nature of the FMS/CC composite endows it with abundant catalytically active sites, thereby accelerating the reduction of I3-. More importantly, the dye-sensitized solar cells (DSSCs) prepared by scraping it on flexible titanium mesh with low resistance had low series resistance (Rs). Electrochemical characterizations revealed that the DSSCs employing the FMS/CC counter electrode achieved a power conversion efficiency (PCE) of ca. 9.51% (surpassing the ca. 8.15% efficiency of the Pt counter electrode), open-circuit voltage (Voc) of ca. 0.79 V, short-circuit current density (Jsc) of ca. 18.31 mA·cm-2, and fill factor (FF) of ca. 0.65. Moreover, after 100 times of cyclic voltammetry (CV) test, the CV curve remainedunchanged, indicating the excellent stability of FMS/CC in the electrolyte containing I3-/I-.
Herein, an FMS/CC composite was successfully fabricated by depositing FeMoS4 onto a pristine carbon fiber cloth (CC) substrate via a facile two-step hydrothermal method. The amorphous nature of the FMS/CC composite endows it with abundant catalytically active sites, thereby accelerating the reduction of I3-. More importantly, the dye-sensitized solar cells (DSSCs) prepared by scraping it on flexible titanium mesh with low resistance had low series resistance (Rs). Electrochemical characterizations revealed that the DSSCs employing the FMS/CC counter electrode achieved a power conversion efficiency (PCE) of ca. 9.51% (surpassing the ca. 8.15% efficiency of the Pt counter electrode), open-circuit voltage (Voc) of ca. 0.79 V, short-circuit current density (Jsc) of ca. 18.31 mA·cm-2, and fill factor (FF) of ca. 0.65. Moreover, after 100 times of cyclic voltammetry (CV) test, the CV curve remainedunchanged, indicating the excellent stability of FMS/CC in the electrolyte containing I3-/I-.