Citation: Yufeng ZHANG, Haotian QI, Jingya ZHONG, Leiming LANG, Guojun YUAN, Siqi LU, Haiying WANG, Guangxiang LIU. S-anion effects on the improvement of adsorption capacity and performance for benzyl alcohol electro-oxidation catalysts[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(12): 2591-2600. doi: 10.11862/CJIC.20250282 shu

S-anion effects on the improvement of adsorption capacity and performance for benzyl alcohol electro-oxidation catalysts

Figures(5)

  • Ni2CoS4 was prepared by the liquid-phase method and applied to the benzyl alcohol electro-oxidation reaction (BAOR), demonstrating excellent catalytic activity [with a current density of 271 mA·cm-2 at 1.40 V (vs RHE)] and long-term stability. The S-anion effect can regulate the charge distribution on the catalyst surface, thereby enhancing the additional adsorption capacity of OH- at the Co sites. By combining material characterization and theoretical calculations, it can be observed that this process can increase the concentration of the OH* intermediate, accelerate the activation process of the Ni site, and ultimately achieve an improvement in overall activity and stability.
  • 加载中
    1. [1]

      YIN C, WANG S L, YANG F L, FENG L G. Spontaneous charge redistribution with diverse nucleophilic and electrophilic sites in NiTe/Mo6Te8 for urea-assisted water electrolysis[J]. J. Eenergy Chem., 2025, 106: 340-350  doi: 10.1016/j.jechem.2025.02.042

    2. [2]

      WANG K L, LIU P C, WANG M Z, WEI T R, LU J T, ZHAO X L, JIANG Z Y, YUAN Z M, LIU X J, HE J. Modulating d-d orbitals coupling in PtPdCu medium-entropy alloy aerogels to boost pH-general methanol electrooxidation performance[J]. Chin. Chem. Lett., 2025, 36(4): 110532  doi: 10.1016/j.cclet.2024.110532

    3. [3]

      LI W S, NIE R R, SONG Y, NI L J, WU D, WU G G, CHU R Z, MENG X L. Microwave-driven ethanol steam reforming for low‐ temperature H2 production over the carbon nanotubes supported NiFe-based catalysts[J]. Int. J. Hydrog. Energy, 2025, 101: 490-503  doi: 10.1016/j.ijhydene.2024.12.414

    4. [4]

      XIANG C, LING Y Y, ZHOU Z T, ZHU X Y, XUE F, FENG Z J, WANG Y W, CHENG X Y, WANG M F, CHENG X M. Efficient synergism of concentric ring structures and carbon dots for enhanced methanol electro-oxidation[J]. RSC Adv., 2024, 14(41): 30091-30101  doi: 10.1039/D4RA04685D

    5. [5]

      HOU Y C, DING M W, LIU S K, WU S K, LIN Y C. Ni-substituted LaMnO3 perovskites for ethanol oxidation[J]. RSC Adv., 2014, 4(11): 5329-5339  doi: 10.1039/c3ra46323k

    6. [6]

      LIU S L, ZHOU L L, ZHANG W J, JIN J Y, MU X Q, ZHANG S D, CHEN C Y, MU S C. Stabilizing sulfur vacancy defects by performing "click" chemistry of ultrafine palladium to trigger a high-efficiency hydrogen evolution of MoS2[J]. Nanoscale, 2020, 12(18): 9943-9949  doi: 10.1039/D0NR01693D

    7. [7]

      ZHENG Y, WAN X J, CHENG X, CHENG K, DAI Z F, LIU Z H. Advanced catalytic materials for ethanol oxidation in direct ethanol fuel cells[J]. Catalysts, 2020, 10(2): 22-24

    8. [8]

      HEDAYATINASAB F, GHAFFARINEJAD A. Enhanced ethanol oxidation using nickel-tungsten alloy: Durable catalysts for direct ethanol fuel cells[J]. J Environ. Chem. Eng., 2025, 13(1): 115228  doi: 10.1016/j.jece.2024.115228

    9. [9]

      WEN H, DUAN W, GUO L, WANG Q, FU X, WANG Y H, LI R, JIN B B, DU R, YANG C M, WANG D J. Directing charge transfer in a chemical-bonded Ni/Cd0.7Mn0.3S Schottky heterojunction for selective photocatalytic oxidation of benzyl alcohol structural organic platform molecules coupled with hydrogen evolution reaction[J]. Appl. Catal. B‒Environ. Energy, 2024, 345: 123641  doi: 10.1016/j.apcatb.2023.123641

    10. [10]

      SU W L, ZHENG X Z, XIONG W, OUYANG Y, ZHANG Z, ZENG W W, DUAN H T, CHEN X Y, SU P Y, SUN Z M, YUAN M W. Open active sites in Ni-based MOF with high oxidation states for electrooxidation of benzyl alcohol[J]. Inorg. Chem., 2024, 63(27): 12572-12581  doi: 10.1021/acs.inorgchem.4c01507

    11. [11]

      ZHANG Y F, LIU D, WU H, YANG Z Y, XIA Z X, WU Q H, YU S S, WANG H Y, LANG L M, LIU G X. The metal-support interactions of Cr(OH)3 enhance the performance of supported Au-based benzyl alcohol electrooxidation catalysts[J]. Chem. Commun., 2025, 61(16): 3379-3382  doi: 10.1039/D5CC00245A

    12. [12]

      FENG D, DONG Y, ZHANG L, GE X, ZHANG W, DAI S, QIAO Z A. holey lamellar high-entropy oxide as an ultra-high-activity heterogeneous catalyst for solvent-free aerobic oxidation of benzyl alcohol[J]. Angew. Chem. -Int. Edit., 2020, 59(44): 19503-19509  doi: 10.1002/anie.202004892

    13. [13]

      BABAR N U, JOYA K S, TAYYAB M A, ASHIQ M N, SOHAIL M. Highly sensitive and selective detection of arsenic using electrogenerated nanotextured gold assemblage[J]. ACS Omega, 2019, 4(9): 13645-13657  doi: 10.1021/acsomega.9b00807

    14. [14]

      SULTAN M A, HASSAN H B, HASSAN S S, ISMAIL K M. Enhanced electrocatalytic alcohol oxidation with Ni-MOF for direct alcohol fuel cell applications[J]. Int. J. Hydrog. Energy, 2025, 100: 528-547  doi: 10.1016/j.ijhydene.2024.12.335

    15. [15]

      LI X L, CHEN M C, YE Y T, CHEN C J, LI Z L, ZHOU Y F, CHEN J, XIE F Y, JIN Y S, WANG N, MENG H. Electronic structure modulation of nickel sites by cationic heterostructures to optimize ethanol electrooxidation activity in alkaline solution[J]. Small, 2023, 19(18): 2207086  doi: 10.1002/smll.202207086

    16. [16]

      DU R X, WU B, TAN W L, LEI Y C, TU Y C, MEBRAHTU C, CHEN Z H, LI S L, ZHOU Z H, TANG Z C, CHEN H H, CHEN S M, CHEN L, WANG J J, SHI X F, YE Y F, WANG D S, PALKOVITS R, ZHAO W, ZENG F. Metallic Ni as electron acceptor modulates the redox of catalytic centers at activated Ni0/Ni(OH)2 heterojunctions for efficient ethanol electrooxidation[J]. Angew. Chem. ‒Int. Edit., 2025: e202510285

    17. [17]

      TAO J G L, CHEN J X, ZHAO B, FENG R F, SHAKOURI M, CHEN F. Ni3C/Ni3S2 heterojunction electrocatalyst for efficient methanol oxidation via dual anion co-modulation strategy[J]. Small, 2024, 20(46): 2402492  doi: 10.1002/smll.202402492

    18. [18]

      HUANG L, LIN X C, ZHANG K, ZHANG J, WANG C H, QU S J, WANG Y G. Extraordinary d-d hybridization in Co(Cu)0.5OxHy microcubes facilitates PhCH2O*-Co(Ⅳ) coupling for benzyl alcohol electrooxidation[J]. Appl. Catal. B‒Environ. Energy, 2024, 346: 123739  doi: 10.1016/j.apcatb.2024.123739

    19. [19]

      WU Y, GUO X L, CHEN H G, XIN Y C, DONG X A, HU X L, XIA L, YU P. Molybdenum triggers the bifunctional mechanism of oxygen evolution reaction of Fe34-xNi25Co25MoxB8P8 amorphous alloy with boosted catalytic activity[J]. J. Electroanal. Chem., 2024, 972: 118612  doi: 10.1016/j.jelechem.2024.118612

    20. [20]

      WANG S W, GENG Z, BI S H, WANG Y W, GAO Z J, JIN L M, ZHANG C M. Recent advances and future prospects on Ni3S2-based electrocatalysts for efficient alkaline water electrolysis[J]. Green Energy Environ., 2024, 9(4): 659-683  doi: 10.1016/j.gee.2023.02.011

    21. [21]

      ALDIES A M, AWAD S. Distinct influence of Cd in the electrocatalyst of Ni-Co-Cd/CNFs nanoparticles as a catalyst in direct alcohol fuel cells (DAFCs)[J]. Solid State Ionics, 2025, 423: 116846  doi: 10.1016/j.ssi.2025.116846

    22. [22]

      WAN Z M, WANG L Q, ZHOU Y H, XU S Y, ZHANG J, CHEN X, LI S, OU C J, KONG X Z. A frogspawn inspired twin Mo2C/Ni composite with a conductive fibrous network as a robust bifunctional catalyst for advanced anion exchange membrane electrolyzers[J]. Nanoscale, 2024, 16(11): 5845-5854  doi: 10.1039/D3NR06242B

    23. [23]

      CHEN D X, DING Y X, CAO X, SUN L C. Heterostructured Ni-Co electrocatalyst with enhanced interfacial charge transfer for efficient biomass upgrading[J]. Appl. Catal. B‒Environ. Energy, 2025, 378: 125539  doi: 10.1016/j.apcatb.2025.125539

    24. [24]

      GU X Y, JING H Y, MU X Q, YANG H, ZHOU Q, YAN S L, LIU S L, CHEN C Y. La-triggered synthesis of oxygen vacancy-modified cobalt oxide nanosheets for highly efficient oxygen evolution in alkaline media[J]. J. Alloy. Compd., 2020, 814: 152274  doi: 10.1016/j.jallcom.2019.152274

    25. [25]

      LI R C, KUANG P Y, WANG L X, TANG H L, YU J G. Engineering 2D NiO/Ni3S2 heterointerface electrocatalyst for highly efficient hydrogen production coupled with benzyl alcohol oxidation[J]. Chem. Eng. J., 2022, 431: 134137  doi: 10.1016/j.cej.2021.134137

    26. [26]

      WU T H, LIN Y C, HOU B W, LIANG W Y. Nanostructured β-NiS catalyst for enhanced and stable electro-oxidation of urea[J]. Catalysts, 2020, 10(11): 1280-1291  doi: 10.3390/catal10111280

    27. [27]

      MANSOR M, BUDIMAN S N, ZAINOODIN A M, KHAIRUNNISA M P, YAMANAKA S, JUSOH N W C, LIZA S. Candle soot as a novel support for nickel nanoparticles in the electrocatalytic ethanol oxidation[J]. Nanomaterials, 2024, 14(12): 1042  doi: 10.3390/nano14121042

    28. [28]

      HUANG H F, DENG X L, YAN L Q, WEI G, ZHOU W Z, LIANG X Q, GUO J. One-step synthesis of self-supported Ni3S2/NiS composite film on Ni foam by electrodeposition for high-performance supercapacitors[J]. Nanomaterials, 2019, 9(12): 1718  doi: 10.3390/nano9121718

    29. [29]

      CHEN W, SHI J Q, WU Y D, JIANG Y M, HUANG Y C, ZHOU W, LIU J L, DONG C L, ZOU Y Q, WANG S Y. Vacancy‐induced catalytic mechanism for alcohol electrooxidation on nickel‐based electrocatalyst[J]. Angew. Chem. ‒Int. Edit., 2023, 63(4): e202316449

    30. [30]

      ZHANG N, HU Y, AN L, LI Q Y, YIN J, LI J Y, YANG R, LU M, ZHANG S, XI P X, YAN C H. Surface activation and Ni‐S stabilization in NiO/NiS2 for efficient oxygen evolution reaction[J]. Angew. Chem. ‒Int. Edit., 2022, 61(35): e202207217  doi: 10.1002/anie.202207217

    31. [31]

      YAN Y D, WANG R Y, ZHENG Q, ZHONG J Y, HAO W C, YAN S C, ZOU Z G. Nonredox trivalent nickel catalyzing nucleophilic electrooxidation of organics[J]. Nat. Commun., 2023, 14(1): 7987-7997  doi: 10.1038/s41467-023-43649-6

    32. [32]

      WU Q K, WANG S R, GUO J H, FENG X Q, LI H, LV S S, ZHOU Y, CHEN Z. Insight into sulfur and iron effect of binary nickel-iron sulfide on oxygen evolution reaction[J]. Nano Res., 2021, 15(3): 1901-1908

    33. [33]

      VO T G, TRAN G S, CHIANG C L, LIN Y G, CHANG H E, KUO H H, CHIANG C Y, HSU Y J. Au@NiSx yolk@shell nanostructures as dual-functional electrocatalysts for concomitant production of value-added tartronic acid and hydrogen fuel[J]. Adv. Funct. Mater., 2023, 33(4): 2209386  doi: 10.1002/adfm.202209386

    34. [34]

      XUE Z Q, LI X, LIU Q L, CAI M K, LIU K, LIU M, KE Z F, LIU X L, LI G Q. Interfacial electronic structure modulation of NiTe nanoarrays with NiS nanodots facilitates electrocatalytic oxygen evolution[J]. Adv. Mater., 2019, 31(21): 1900430  doi: 10.1002/adma.201900430

    35. [35]

      LI D R, WAN W J, WANG Z W, WU H Y, WU S X, JIANG T, CAI G X, JIANG C Z, REN F. Self-derivation and surface reconstruction of Fe‐doped Ni3S2 electrode realizing high-efficient and stable overall water and urea electrolysis[J]. Adv. Energy. Mater., 2022, 12(39): 2201913  doi: 10.1002/aenm.202201913

    36. [36]

      GULTOM N S, LI C H, KUO D H, ABDULLAH H. Single-step synthesis of Fe-doped Ni3S2/FeS2 nanocomposites for highly efficient oxygen evolution reaction[J]. ACS Appl. Mater. Interfaces, 2022, 14(35): 39917-39926  doi: 10.1021/acsami.2c08246

    37. [37]

      XU Y Z, YUAN C Z, CHEN X P. Co-doped NiSe nanowires on nickel foam via a cation exchange approach as efficient electrocatalyst for enhanced oxygen evolution reaction[J]. RSC Adv., 2016, 6(108): 106832-106836  doi: 10.1039/C6RA23580H

    38. [38]

      KANSAL S, R R, ANSHU S, PRIYA S, MANDAL D, SRIVASTAVA A K, CHANDRA A. Lattice strain-induced d-band modulation in nanosheets of CuxNiCo-layered double hydroxides for enhanced water electrolysis[J]. ACS Sustain. Chem. Eng., 2024, 12(36): 13511-13524  doi: 10.1021/acssuschemeng.4c03545

    39. [39]

      MA G Y, YE J T, QIN M Y, SUN T Y, TAN W X, FAN Z H, HUANG L F, XIN X. Mn-doped NiCoP nanopin arrays as high- performance bifunctional electrocatalysts for sustainable hydrogen production via overall water splitting[J]. Nano Energy, 2023, 115: 108679  doi: 10.1016/j.nanoen.2023.108679

    40. [40]

      WANG Y, HU T, LIU Q, ZHANG L. CoMn2O4 embedded in MnOOH nanorods as a bifunctional catalyst for oxygen reduction and oxygen evolution reactions[J]. Chem. Commun., 2018, 54(32): 4005-4008  doi: 10.1039/C8CC00870A

  • 加载中
    1. [1]

      Cheng WangLi ZhouZhenghao FeiYanqing WangYukou Du . Surface dynamic reconstruction of Ni-based catalysts for electrooxidation reaction. Chinese Chemical Letters, 2025, 36(12): 111746-. doi: 10.1016/j.cclet.2025.111746

    2. [2]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    3. [3]

      Zhenhui SongXing WuTianyu GaoFubing YaoXi TangQaisar MahmoodChong-Jian Tang . Performance enhancement strategies for electrooxidation degradation of landfill leachate: A review. Chinese Chemical Letters, 2025, 36(12): 111008-. doi: 10.1016/j.cclet.2025.111008

    4. [4]

      Shuyuan Pan Zehui Yang Fang Luo . Ni-based electrocatalysts for urea assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(8): 100373-100373. doi: 10.1016/j.cjsc.2024.100373

    5. [5]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    6. [6]

      Lili WangYa YanRulin LiXujie HanJiahui LiTing RanJialu LiBaichuan XiongXiaorong SongZhaohui YinHong WangQingjun ZhuBowen ChengZhen Yin . Interface engineering of 2D NiFe LDH/NiFeS heterostructure for highly efficient 5-hydroxymethylfurfural electrooxidation. Chinese Chemical Letters, 2024, 35(9): 110011-. doi: 10.1016/j.cclet.2024.110011

    7. [7]

      Ke Wang Jia Wu Shuyi Zheng Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104

    8. [8]

      Kaili WangPengcheng LiuMingzhe WangTianran WeiJitao LuXingling ZhaoZaiyong JiangZhimin YuanXijun LiuJia He . Modulating d-d orbitals coupling in PtPdCu medium-entropy alloy aerogels to boost pH-general methanol electrooxidation performance. Chinese Chemical Letters, 2025, 36(4): 110532-. doi: 10.1016/j.cclet.2024.110532

    9. [9]

      Xiaoru LIUJinlian SHIYajia ZHENGShuangcun MOZhongxuan XU . Two Ni-based frameworks with helices and dinuclear units constructed from semi-rigid carboxylic acid and imidazole derivatives. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 797-808. doi: 10.11862/CJIC.20240328

    10. [10]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    11. [11]

      Zihao WangJing XueZhicui SongJianxiong XingAijun ZhouJianmin MaJingze Li . Li-Zn alloy patch for defect-free polymer interface film enables excellent protection effect towards stable Li metal anode. Chinese Chemical Letters, 2024, 35(10): 109489-. doi: 10.1016/j.cclet.2024.109489

    12. [12]

      Xingang KongYabei SuCuijuan XingWeijie ChengJianfeng HuangLifeng ZhangHaibo OuyangQi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428

    13. [13]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    14. [14]

      Peining ZhuXi GuoQinqin YuZuyong WangXiangxiao LeiZhiwei ZhuJuan DuXiaojia ZhangYuan-Li Ding . Design strategies of Si-based anode for solid-state batteries. Chinese Chemical Letters, 2025, 36(9): 111383-. doi: 10.1016/j.cclet.2025.111383

    15. [15]

      Zhili YangLiqun LiuXuebi RaoZeyu JinJialin SunYongkang ZhuShiming Zhang . Deprotonation effect doubles active site density in Fe-N4-C catalyst for oxygen reduction electrocatalysis. Chinese Chemical Letters, 2025, 36(11): 111440-. doi: 10.1016/j.cclet.2025.111440

    16. [16]

      Botao GaoHe QiHui LiuJun Chen . Role of polarization evolution in the hysteresis effect of Pb-based antiferroelecrtics. Chinese Chemical Letters, 2024, 35(4): 108598-. doi: 10.1016/j.cclet.2023.108598

    17. [17]

      Yuting FuHaoran WangNan LiLujiao MaoXusheng WangQipeng LiJinjie Qian . Pt inclusion effect on Ni-ABDC-derived PtNi-carbon nanomaterials for hydrogen evolution. Chinese Chemical Letters, 2025, 36(10): 110890-. doi: 10.1016/j.cclet.2025.110890

    18. [18]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    19. [19]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    20. [20]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2024.100309

Metrics
  • PDF Downloads(0)
  • Abstract views(79)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return