Citation: Huihua GONG, Tianhua CUI, Li JI, Jichuan ZHANG, Liyuan ZHANG, Yan CHEN, Zhenye WANG, Jiaqi XU, Ruixiang LI. Hydrogenation of CO2 to formate catalyzed by N-heterocyclic carbene-nitrogen-phosphine chelated iridium(Ⅰ) complexes[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(12): 2609-2620. doi: 10.11862/CJIC.20250170 shu

Hydrogenation of CO2 to formate catalyzed by N-heterocyclic carbene-nitrogen-phosphine chelated iridium(Ⅰ) complexes

Figures(6)

  • To achieve efficient catalytic hydrogenation of CO₂ to formate, we employed a transmetallation strategy to develop three novel iridium(Ⅰ) complexes, which feature N-heterocyclic carbene-nitrogen-phosphine ligands (CNP) and a 1, 5-cyclooctadiene (cod) molecule: [Ir(cod)(κ3-CNimP)]Cl (1-Cl), [Ir(cod)(κ3-CNimP)]PF6 (1-PF6), and [Ir(cod)(κ3-CNHP)]Cl (2). The 1H NMR spectra, 31P NMR spectra, and high-resolution mass spectra verify the successful synthesis of these three Ir(Ⅰ)-CNP complexes. Furthermore, single-crystal X-ray diffraction analysis confirms the coordination geometry of 1-PF6. The strong Ir—C(NHC) bond suggests that the carbene carbon plays an enhanced anchoring role to iridium due to its strong σ-donating ability, which helps stabilize the active metal species during CO2 hydrogenation. As a result, the Ir(Ⅰ)-CNP complex exhibits remarkable activity and long catalytic lifetime for the hydrogenation of CO2 to formate, reaching a turnover number (TON) of 1.16×106 after 150 h at a high temperature of 170 ℃, which was a relatively high value among all the Ir complexes.
  • 加载中
    1. [1]

      SORDAKIS K, TANG C H, VOGT L K, JUNGE H, DYSON P J, BELLER M, LAURENCZY G. Homogeneous catalysis for sustainable hydrogen storage in formic acid and alcohols[J]. Chem. Rev., 2018, 118(2): 372-433  doi: 10.1021/acs.chemrev.7b00182

    2. [2]

      BAI S T, DE SMET G, LIAO Y H, SUN R Y, ZHOU C, BELLER M, MAES B U W, SELS B F. Homogeneous and heterogeneous catalysts for hydrogenation of CO2 to methanol under mild conditions[J]. Chem. Soc. Rev., 2021, 50(7): 4259-4298  doi: 10.1039/D0CS01331E

    3. [3]

      ESPINOSA M R, CHARBONEAU D J, GARCIA DE OLIVEIRA A, HAZARI N. Controlling selectivity in the hydroboration of carbon dioxide to the formic acid, formaldehyde, and methanol oxidation levels[J]. ACS Catal., 2018, 9(1): 301-314

    4. [4]

      SIEBERT M, SEIBICKE M, SIEGLE A F, KRÄH S, TRAPP O. Selective ruthenium-catalyzed transformation of carbon dioxide: An alternative approach toward formaldehyde[J]. J. Am. Chem. Soc., 2018, 141(1): 334-341

    5. [5]

      KOSTERA S, GONSALVI L. Manganese(Ⅰ) catalyzed CO2 reduction processes in homogenous phase[J]. ChemCatChem, 2024, 16(7): e202301391  doi: 10.1002/cctc.202301391

    6. [6]

      MIRZAKHANI S, YIN B H, MASTERI‐FARAHANI M, YIP A C K. Heterogeneous catalytic systems for carbon dioxide hydrogenation to value‐added chemicals[J]. ChemPlusChem, 2023, 88(7): e202300157  doi: 10.1002/cplu.202300157

    7. [7]

      KOCH C J, GOEPPERT A, SURYA PRAKASH G K. Addition of imidazolium‐based ionic liquid to improve methanol production in polyamine‐assisted CO2 capture and conversion systems using pincer catalysts[J]. ChemSusChem, 2024, 17: e202301789  doi: 10.1002/cssc.202301789

    8. [8]

      MA W T, HU J L, ZHOU L, WU Y T, GENG J, HU X B. Efficient hydrogenation of CO2 to formic acid in water without consumption of a base[J]. Green Chem., 2022, 24(17): 6727-6732  doi: 10.1039/D2GC02694E

    9. [9]

      VAN PUTTEN R, WISSINK T, SWINKELS T, PIDKO E A. Fuelling the hydrogen economy: Scale-up of an integrated formic acid-to-power system[J]. Int. J. Hydrog. Energy, 2019, 44(53): 28533-28541  doi: 10.1016/j.ijhydene.2019.01.153

    10. [10]

      WANG A F, HE P, WU J, CHEN N C, PAN C Y, SHI E Q, JIA H D, HU T Y, HE K S, CAI Q, SHEN R. Reviews on homogeneous and heterogeneous catalysts for dehydrogenation and recycling of formic acid: Progress and perspectives[J]. Energy Fuels, 2023, 37(22): 17075-17093  doi: 10.1021/acs.energyfuels.3c02595

    11. [11]

      WEI D, SANG R, MOAZEZBARABADI A, JUNGE H, BELLER M. Homogeneous carbon capture and catalytic hydrogenation: Toward a chemical hydrogen battery system[J]. JACS Au, 2022, 2(5): 1020-1031  doi: 10.1021/jacsau.1c00489

    12. [12]

      ONISHI N, KANEGA R, FUJITA E, HIMEDA Y. Carbon dioxide hydrogenation and formic acid dehydrogenation catalyzed by iridium complexes bearing pyridyl‐pyrazole ligands: Effect of an electron‐ donating substituent on the pyrazole ring on the catalytic activity and durability[J]. Adv. Synth. Catal., 2019, 361(2): 289-296  doi: 10.1002/adsc.201801323

    13. [13]

      INOUE Y, IZUMIDA H, SASAKI Y, HASHIMOTO H. Catalytic fixation of carbon dioxide to formic acid by transition-metal complexes under mild conditions[J]. Chem. Lett., 1976, 5(8): 863-864  doi: 10.1246/cl.1976.863

    14. [14]

      WEILHARD A, ARGENT S P, SANS V. Efficient carbon dioxide hydrogenation to formic acid with buffering ionic liquids[J]. Nat. Commun. 2021, 12(1): 231  doi: 10.1038/s41467-020-20291-0

    15. [15]

      GUAN C, PAN Y P, ANG E P L, HU J S, YAO C G, HUANG M H, LI H F, LAI Z P, HUANG K W. Conversion of CO2 from air into formate using amines and phosphorus-nitrogen PN3P-Ru(Ⅱ) pincer complexes[J]. Green Chem., 2018, 20(18): 4201-4205  doi: 10.1039/C8GC02186D

    16. [16]

      FILONENKO G A, HENSEN E J M, PIDKO E A. Mechanism of CO2 hydrogenation to formates by homogeneous Ru-PNP pincer catalyst: From a theoretical description to performance optimization[J]. Catal. Sci. Technol., 2014, 4(10): 3474-3485  doi: 10.1039/C4CY00568F

    17. [17]

      BAYS J T, PRIYADARSHANI N, JELETIC M S, HULLEY E B, MILLER D L, LINEHAN J C, SHAW W J. The influence of the second and outer coordination spheres on Rh(diphosphine)2 CO2 hydrogenation catalysts[J]. ACS Catal., 2014, 4(10): 3663-3670  doi: 10.1021/cs5009199

    18. [18]

      TODOROVA T K, HUAN T N, WANG X, AGARWALA H, FONTECAVE M. Controlling hydrogen evolution during photoreduction of CO2 to formic acid using [Rh(R-bpy)(Cp*)Cl]+ catalysts: A structure-activity study[J]. Inorg. Chem., 2019, 58(10): 6893-6903  doi: 10.1021/acs.inorgchem.9b00371

    19. [19]

      TANAKA R, YAMASHITA M, NOZAKI K. Catalytic hydrogenation of carbon dioxide using Ir(Ⅲ)-pincer complexes[J]. J. Am. Chem. Soc., 2009, 131(40): 14168-14169  doi: 10.1021/ja903574e

    20. [20]

      KANEGA R, ONISHI R, TANAKA S, KISHIMOTO H, HIMEDA Y. Catalytic hydrogenation of CO2 to methanol using multinuclear iridium complexes in a gas-solid phase reaction[J]. J. Am. Chem. Soc., 2021, 143(3): 1570-1576  doi: 10.1021/jacs.0c11927

    21. [21]

      MO X F, LIU C, CHEN Z W, MA F, HE P, YI X Y. Metal-ligand cooperation in Cp*Ir-pyridylpyrrole complexes: Rational design and catalytic activity in formic acid dehydrogenation and CO2 hydrogenation under ambient conditions[J]. Inorg. Chem., 2021, 60(21): 16584-16592  doi: 10.1021/acs.inorgchem.1c02487

    22. [22]

      SIANGWATA S, HAMILTON A, TIZZARD G, J, COLES S J, OWEN G R. Room temperature hydrogenation of CO2 utilizing a cooperative phosphorus pyridone‑based iridium complex[J]. ChemCatChem, 2024, 16(8): e202301627  doi: 10.1002/cctc.202301627

    23. [23]

      ZHANG Y Y, MACINTOSH A D, WONG J L, BIELINSKI E A, WILLIARD P G, MERCADO B Q, HAZARI N, BERNSKOETTER W H. Iron catalyzed CO2 hydrogenation to formate enhanced by Lewis acid co-catalysts[J]. Chem. Sci., 2015, 6(7): 4291-4299  doi: 10.1039/C5SC01467K

    24. [24]

      JELETIC M S, MOCK M T, APPEL A M, LINEHAN J C. A cobalt-based catalyst for the hydrogenation of CO2 under ambient conditions[J]. J. Am. Chem. Soc., 2013, 135(31): 11533-11536  doi: 10.1021/ja406601v

    25. [25]

      BURGESS S A, KENDALL A J, TYLER D R, LINEHAN J C, APPEL A M. Hydrogenation of CO2 in water using a bis(diphosphine) Ni-H complex[J]. ACS Catal., 2017, 7(4): 3089-3096  doi: 10.1021/acscatal.7b00350

    26. [26]

      GRØMER B, SAITO S. Hydrogenation of CO2 to MeOH catalyzed by highly robust (PNNP)Ir complexes activated by alkali bases in alcohol[J]. Inorg. Chem., 2023, 62(34): 14116-14123  doi: 10.1021/acs.inorgchem.3c02412

    27. [27]

      TAKAOKA S, EIZAWA A, KUSUMOTO S, NAKAJIMA K, NISHIBAYASHI Y, NOZAKI K. Hydrogenation of carbon dioxide with organic base by PCP-Ir catalysts[J]. Organometallics, 2018, 37(18): 3001-3009  doi: 10.1021/acs.organomet.8b00377

    28. [28]

      ONISHI N, XU S A, MANAKA Y, SUNA Y, WANG W H, MUCKERMAN J T, FUJITA E, HIMEDA Y. CO2 hydrogenation catalyzed by iridium complexes with a proton-responsive ligand[J]. Inorg. Chem., 2015, 54(11): 5114-5123  doi: 10.1021/ic502904q

    29. [29]

      GUNASEKAR G H, YOON Y, BAEK I, YOON S. Catalytic reactivity of an iridium complex with a proton responsive N-donor ligand in CO2 hydrogenation to formate[J]. RSC Adv., 2018, 8(3): 1346-1350  doi: 10.1039/C7RA12343D

    30. [30]

      OCANSEY E, DARKWA J, MAKHUBELA B C E. Iridium and palladium CO2 hydrogenation in water by catalyst precursors with electron-rich tetrazole ligands[J]. Organometallics, 2020, 39(17): 3088-3098  doi: 10.1021/acs.organomet.0c00276

    31. [31]

      FIDALGO J, RUIZ-CASTANEDA M, GARCIA-HERBOSA G, CARBAYO A, JALON F A, RODRIGUEZ A M, MANZANO B R, ESPINO G. Versatile Rh- and Ir-based catalysts for CO2 hydrogenation, formic acid dehydrogenation, and transfer hydrogenation of quinolines[J]. Inorg. Chem., 2018, 57(22): 14186-14198  doi: 10.1021/acs.inorgchem.8b02164

    32. [32]

      MAJUMDER S, DAS R K, SAMANTA C, THOTA C, NEWALKAR B L. Hydrogenation of CO2 into formate using an iridium catalyst containing proton-responsive imidazoline-amide ligands[J]. Catal. Sci. Technol., 2025, 15(11): 3406-3411  doi: 10.1039/D5CY00013K

    33. [33]

      AINEMBABAZI D, WANG K, FINN M, RIDENOUR J, VOUTCHKOVA-KOSTAL A. Efficient transfer hydrogenation of carbonate salts from glycerol using water-soluble iridium N-heterocyclic carbene catalysts[J]. Green Chem., 2020, 22(18): 6093-6104  doi: 10.1039/D0GC01958E

    34. [34]

      JI L, CUI T H, NIE X F, ZHENG Y L, ZHENG X L, FU H Y, YUAN M L, CHEN H, XU J Q, LI R X. Catalytic hydrogenation of CO2 with unsymmetric N-heterocyclic carbene-nitrogen-phosphine ruthenium complexes[J]. Catal. Sci. Technol., 2021, 11(21): 6965-6969  doi: 10.1039/D1CY01713F

    35. [35]

      KUMAR A, SEMWAL S, CHOUDHURY J. Catalytic conversion of CO2 to formate with renewable hydrogen donors: An ambient-pressure and H2-independent strategy[J]. ACS Catal., 2019, 9(3): 2164-2168  doi: 10.1021/acscatal.8b04430

    36. [36]

      AZUA A, SANZ S, PERIS E. Water-soluble Ir N-heterocyclic carbene based catalysts for the reduction of CO2 to formate by transfer hydrogenation and the deuteration of aryl amines in water[J]. Chem. ‒Eur. J., 2011, 17(14): 3963-3967  doi: 10.1002/chem.201002907

    37. [37]

      GONG H H, CUI T H, LIU Z Y, ZHENG Y L, ZHENG X L, FU H Y, YUAN M L, CHEN H, XU J Q, LI R X. Nitrogen-nitrogen-functionalized N-heterocyclic carbene ruthenium(Ⅱ) complexes realized efficient CO2 hydrogenation to formate[J]. Catal. Sci. Technol., 2022, 12(20): 6213-6218  doi: 10.1039/D2CY00741J

    38. [38]

      JOHNSON M C, ROGERS D, KAMINSKY W, COSSAIRT B M. CO2 hydrogenation catalyzed by a ruthenium protic N-heterocyclic carbene complex[J]. Inorg. Chem., 2021, 60(8): 5996-6003  doi: 10.1021/acs.inorgchem.1c00417

    39. [39]

      LI Y Q, YU X J, WANG Y D D, FU H Y, ZHENG X L, CHEN H, LI R X. Unsymmetrical pincer N-heterocyclic carbene-nitrogen-phosphine chelated palladium(Ⅱ) complexes: Synthesis, structure, and reactivity in direct Csp2-H arylation of benzoxazoles[J]. Organometallics, 2018, 37(6): 979-988  doi: 10.1021/acs.organomet.8b00005

    40. [40]

      DOLOMANOV O V, BOURHIS L J, GILDEA R J, HOWARD J A K, PUSCHMANN H. OLEX2: A complete structure solution, refinement and analysis program[J]. J. Appl. Crystallogr., 2009, 42(2): 339-341  doi: 10.1107/S0021889808042726

    41. [41]

      SHELDRICK G M. SHELXT-integrated space-group and crystal-structure determination[J]. Acta Crystallogr. Sect. A, 2015, A71: 3-8

    42. [42]

      SHELDRICK G M. Crystal structure refinement with SHELXL[J]. Acta Crystallogr. Sect. C, 2015, C71: 3-8

    43. [43]

      SCHMEIER T J, DOBEREINER G E, CRABTREE R H, HAZARI N. Secondary coordination sphere interactions facilitate the insertion step in an iridium(Ⅲ) CO2 reduction catalyst[J]. J. Am. Chem. Soc., 2011, 133(24): 9274-9277  doi: 10.1021/ja2035514

    44. [44]

      PUERTA-OTEO R, HÖLSCHER M, JIMÉNEZ M V, LEITNER W, PASSARELLI V, PÉREZ-TORRENTE J J. Experimental and theoretical mechanistic investigation on the catalytic CO2 hydrogenation to formate by a carboxylate-functionalized bis(N-heterocyclic carbene) zwitterionic iridium(Ⅰ) compound[J]. Organometallics, 2017, 37(5): 684-696

    45. [45]

      WANG W H, MUCKERMAN J T, FUJITA E, HIMEDA Y. Mechanistic insight through factors controlling effective hydrogenation of CO2 catalyzed by bioinspired proton-responsive iridium(Ⅲ) complexes[J]. ACS Catal., 2013, 3(5): 856-860  doi: 10.1021/cs400172j

    46. [46]

      SANZ S, AZUA A, PERIS E. '(η6-arene)Ru(bis-NHC)' complexes for the reduction of CO2 to formate with hydrogen and by transfer hydrogenation with iPrOH[J]. Dalton Trans., 2010, 39(27): 6339-6343  doi: 10.1039/c003220d

    47. [47]

      HUFF C A, SANFORD M S. Catalytic CO2 hydrogenation to formate by a ruthenium pincer complex[J]. ACS Catal., 2013, 3(10): 2412-2416  doi: 10.1021/cs400609u

    48. [48]

      LIU C, XIE J H, TIAN G L, LI W, ZHOU Q L. Highly efficient hydrogenation of carbon dioxide to formate catalyzed by iridium(Ⅲ) complexes of imine-diphosphine ligands[J]. Chem. Sci., 2015, 6(5): 2928-2931  doi: 10.1039/C5SC00248F

  • 加载中
    1. [1]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    2. [2]

      Sanmei WangDengxin YanWenhua ZhangLiangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611

    3. [3]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    4. [4]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    5. [5]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    6. [6]

      Qinhui GuanYuhao GuoNa LiJing LiTingjiang Yan . Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation. Acta Physico-Chimica Sinica, 2025, 41(11): 100133-0. doi: 10.1016/j.actphy.2025.100133

    7. [7]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    8. [8]

      Xiaorui ChenXuan LuoTongming SuXinling XieLiuyun ChenYuejing BinZuzeng QinHongbing Ji . Ga-doped Cu/γ-Al2O3 bifunctional interface sites promote the direct hydrogenation of CO2 to DME. Acta Physico-Chimica Sinica, 2025, 41(10): 100126-0. doi: 10.1016/j.actphy.2025.100126

    9. [9]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

    10. [10]

      Hao-Cong LiMing ZhangQiyan LvKai SunXiao-Lan ChenLingbo QuBing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579

    11. [11]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

    12. [12]

      Pei XuTian-Zi HaoZhi-Tao LiuYi-Qin LiuHui-Xian JiangDong GuoXu Zhu . Visible-light-induced dual catalysis for divergent reduction of nitro compounds with CO2 radical anion. Chinese Chemical Letters, 2025, 36(10): 110899-. doi: 10.1016/j.cclet.2025.110899

    13. [13]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    14. [14]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    15. [15]

      Jinyu GuoYandai LinShaohua HeYueqing ChenFenglu LiRenjie RuanGaoxing PanHexin NanJibin SongJin Zhang . Utilizing dual-responsive iridium(Ⅲ) complex for hepatocellular carcinoma: Integrating photoacoustic imaging with chemotherapy and photodynamic therapy. Chinese Chemical Letters, 2024, 35(9): 109537-. doi: 10.1016/j.cclet.2024.109537

    16. [16]

      Minghui ZhangNa ZhangQian ZhaoChao WangAlexander SteinerJianliang XiaoWeijun Tang . Cobalt pincer complex-catalyzed highly enantioselective hydrogenation of quinoxalines. Chinese Chemical Letters, 2025, 36(4): 110081-. doi: 10.1016/j.cclet.2024.110081

    17. [17]

      Xiang LiBeibei ZhangZhixiang WangXiangyu Chen . Organocatalyzed iodine-mediated reversible-deactivation radical polymerization via photoinduced charge transfer complex catalysis. Chinese Chemical Letters, 2025, 36(6): 110383-. doi: 10.1016/j.cclet.2024.110383

    18. [18]

      Hongping ZhaoWeiming Yuan . Merging catalytic electron donor-acceptor complex and copper catalysis: Enantioselective radical carbocyanation of alkenes. Chinese Chemical Letters, 2025, 36(10): 110894-. doi: 10.1016/j.cclet.2025.110894

    19. [19]

      Qiuyue LuMin ShanJiaqi YangZhongren XuYueyue LeiWukun Liu . A dinuclear gold(I) complex with bis(N-heterocyclic carbene) ligands potentiated immune responses against liver cancer via ROS-driven endoplasmic reticulum stress and ferroptosis. Chinese Chemical Letters, 2025, 36(12): 110940-. doi: 10.1016/j.cclet.2025.110940

    20. [20]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

Metrics
  • PDF Downloads(3)
  • Abstract views(91)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return