Citation: Wenjuan SHI, Yuke LU, Xiuyuan LI, Lei HOU, Yaoyu WANG. Mg(Ⅱ) metal-organic frameworks based on biphenyltetracarboxylic acid: Synthesis and CO2 adsorption and catalytic conversion performance[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(12): 2455-2463. doi: 10.11862/CJIC.20250220 shu

Mg(Ⅱ) metal-organic frameworks based on biphenyltetracarboxylic acid: Synthesis and CO2 adsorption and catalytic conversion performance

  • Corresponding author: Lei HOU, lhou2009@nwu.edu.cn
  • Received Date: 1 July 2025
    Revised Date: 15 September 2025

Figures(4)

  • Under solvothermal synthetic conditions, this study employed the organic carboxylic acid ligand containing amino groups, 4, 4′-diamino-[1, 1′-biphenyl]-3, 3′, 5, 5′-tetracarboxylic acid (H4L), to react with Mg2+ ions, resulting in the preparation of a novel three-dimensional metal-organic framework: {[Mg2(L)(DMA)(H2O)2]·2DMA·H2O}n (Mg-MOF, DMA=N, N-dimethyl acetamide). The structure and stability of Mg-MOF were determined by single-crystal X-ray diffraction, elemental analysis, thermogravimetric analysis, and so on, and the CO2 adsorption and catalytic conversion properties were also deeply investigated. The results indicate that Mg-MOF crystallizes in the monoclinic system with space group P21/n, unit cell parameters a=1.399 88(15) nm, b=1.400 49(15) nm, c=1.768 57(19) nm, β=94.307(2)°. Mg-MOF shows a 4-connected (42·84)-ant topological net, possessing one-dimensional channels decorated with amino groups. It reveals excellent adsorption selectivity for CO2 over CH4 and CO (18.7-19.9 and 8.9-9.5, respectively), as well as highly efficient catalytic performance for the conversion of CO2 and epoxides into cyclic carbonates at the condition of 298 K and 100 kPa.
  • 加载中
    1. [1]

      SUMIDA K, ROGOW D L, MASON J A, McDONALD T M, BLOCH E D, HERM Z R, BAE T H, LONG J R. Carbon dioxide capture in metal-organic frameworks[J]. Chem. Rev., 2012, 112(2): 724-781  doi: 10.1021/cr2003272

    2. [2]

      CHU S. Carbon capture and sequestration[J]. Science, 2009, 325(5948): 1599-1599  doi: 10.1126/science.1181637

    3. [3]

      ANIRUDDHA R, SREEDHAR I, REDDY B M. MOFs in carbon capture-past, present and future[J]. J. CO2 Util., 2020, 42: 101297  doi: 10.1016/j.jcou.2020.101297

    4. [4]

      ZEESHAN M, NOZARI V, YAGCI M B, ISIK T, UNAL U, ORTALAN V, KESKIN S, UZUN A. Core-shell type ionic liquid/metal organic framework composite: An exceptionally high CO2/CH4 selectivity[J]. J. Am. Chem. Soc., 2018, 140(32): 10113-10116  doi: 10.1021/jacs.8b05802

    5. [5]

      LEE G, AHMED I, JHUNG S H. CO2 adsorption using functionalized metal-organic frameworks under low pressure: Contribution of functional groups, excluding amines, to adsorption[J]. Chem. Eng. J., 2024, 481: 148440  doi: 10.1016/j.cej.2023.148440

    6. [6]

      ZHAO X, WANG Y, LI D S, BU X H, FENG P Y. Metal-organic frameworks for separation[J]. Adv. Mater., 2018, 30(37): 1705189  doi: 10.1002/adma.201705189

    7. [7]

      BAI Y, WANG J J, TANG L, YUE E L, BAI C, WANG X, ZHANG Y Q. A cadmium(Ⅱ) coordination polymer based on a semirigid tetracarboxylate ligand for highly selective detection of Fe3+ and 4-nitrophenol[J]. Chinese J. Inorg. Chem., 2025, 41(6): 1217-1226  doi: 10.11862/CJIC.20240457

    8. [8]

      DING M L, FLAIG R W, JIANG H L, YAGHI O M. Carbon capture and conversion using metal-organic frameworks and MOF-based materials[J]. Chem. Soc. Rev., 2019, 48(10): 2783-2828  doi: 10.1039/C8CS00829A

    9. [9]

      GAI S P, TIAN J D, JIANG F L, CHEN Q H, HONG M C. A microporous cobalt-based metal-organic framework for selective gas adsorption[J]. Chinese J. Inorg. Chem., 2023, 39(6): 1014-1022  doi: 10.11862/CJIC.2023.076

    10. [10]

      KIM J, KIM S N, JANG H G, SEO G, AHN W S. CO2 cycloaddition of styrene oxide over MOF catalysts[J]. Appl. Catal. A‒Gen., 2013, 453: 175-180  doi: 10.1016/j.apcata.2012.12.018

    11. [11]

      ZHOU Z, HE C, XIU J H, YANG L, DUAN C Y. Metal-organic polymers containing discrete single-walled nanotube as a heterogeneous catalyst for the cycloaddition of carbon dioxide to epoxides[J]. J. Am. Chem. Soc., 2015, 137(48): 15066-15069  doi: 10.1021/jacs.5b07925

    12. [12]

      DONG W Y, WANG Z X, CAI Z X, DENG Y Q, WANG G Y, ZHENG B S. Highly efficient CO2 capture and chemical fixation of a microporous (3,36)-connected txt-type Cu(Ⅱ)-MOF with multifunctional sites[J]. Dalton Trans., 2024, 54(2): 745-753

    13. [13]

      YU C L, HE X L, GONG C X, LI J H, YE K Y. Tailoring of unsaturated metal sites in metal-organic frameworks to promote the conversion of CO2 into high-value-added products[J]. Inorg. Chem., 2025, 64(14): 6977-6986  doi: 10.1021/acs.inorgchem.5c00235

    14. [14]

      LAN J W, LIU M S, LU X Y, ZHANG X, SUN J M. Novel 3D nitrogen-rich metal organic framework for highly efficient CO2 adsorption and catalytic conversion to cyclic carbonates under ambient temperature[J]. ACS Sustain. Chem. Eng., 2018, 6(7): 8727-8735  doi: 10.1021/acssuschemeng.8b01055

    15. [15]

      LIANG L F, LIU C P, JIANG F L, CHEN Q H, ZHANG L J, XUE H, JIANG H L, QIAN J J, YUAN D Q, HONG M C. Carbon dioxide capture and conversion by an acid-base resistant metal-organic framework[J]. Nat. Commun., 2017, 8: 1233  doi: 10.1038/s41467-017-01166-3

    16. [16]

      JIANG M Z, WANG Q, BAI J F. Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas[J]. Chinese J. Inorg. Chem., 2025, 41(1): 1-13  doi: 10.11862/CJIC.20240355

    17. [17]

      YUAN Y B, WANG L Y, LI J H, JIANG Y J, SUN W Q, HAN Y, LUAN B Q, BAYER J, FERREIRA R N B, STEINER M, CHEN B L, ZHANG Y B. A flexible dihydrogen-bonded organic framework with selective gas adsorption properties[J]. Chem. Mat., 2024, 36(16): 8123-8130

    18. [18]

      MA L N, WANG Z H, ZHANG L, HOU L, WANG Y Y, ZHU Z H. Extraordinary separation of acetylene-containing mixtures in a honeycomb calcium-based MOF with multiple active sites[J]. ACS Appl. Mater. Interfaces, 2023, 15(2): 2971-2978  doi: 10.1021/acsami.2c19321

    19. [19]

      LEI J, YUAN W Y, SHANG J X, XU J, ZHANG P, WANG Y, LI Y P, ZHAI Q G. Development of a mixed multinuclear cluster strategy in metal-organic frameworks for methane purification and storage[J]. Inorg. Chem., 2023, 62(37): 15195-15205  doi: 10.1021/acs.inorgchem.3c02347

    20. [20]

      CHOWDHURY P, MEKALA S, DREISBACH F, GUMMA S. Adsorption of CO, CO2 and CH4 on Cu-BTC and MIL-101 metal organic frameworks: Effect of open metal sites and adsorbate polarity[J]. Microporous Mesoporous Mat., 2012, 152: 246-252  doi: 10.1016/j.micromeso.2011.11.022

    21. [21]

      XIONG Y, FAN Y Z, YANG R, CHEN S, PAN M, JIANG J J, SU C Y. Amide and N-oxide functionalization of T-shaped ligands for isoreticular MOFs with giant enhancements in CO2 separation[J]. Chem. Commun., 2014, 50(93): 14631-14634  doi: 10.1039/C4CC06697A

    22. [22]

      WANG S M, LIU H R, NI S, YANG Q Y. A structured ultramicroporous metal-organic framework for carbon dioxide capture[J]. Chin. J. Chem., 2023, 41(7): 763-768  doi: 10.1002/cjoc.202200658

    23. [23]

      ZHANG Y B, YANG L F, WANG L Y, DUTTWYLER S, XING H B. A microporous metal-organic framework supramolecularly assembled from a Cu dodecaborate cluster complex for selective gas separation[J]. Angew. Chem.‒Int. Edit., 2019, 58(24): 8145-8150  doi: 10.1002/anie.201903600

    24. [24]

      ZHANG L, WANG G D, ZHANG B, YANG G P, ZHANG W Y, HOU L, WANG Y Y, ZHU Z H. Creating a MOF with larger pores and higher stability for gas separation through continuous structure transformation[J]. J. Mater. Chem. A, 2024, 12(38): 25820-25828  doi: 10.1039/D4TA05318D

    25. [25]

      GAO W Y, WOJTAS L, MA S Q. A porous metal-metalloporphyrin framework featuring high-density active sites for chemical fixation of CO2 under ambient conditions[J]. Chem. Commun., 2014, 50(40): 5316-5318  doi: 10.1039/C3CC47542E

    26. [26]

      HE H M, SUN Q, GAO W Y, PERMAN J A, SUN F X, ZHU G S, AGUILA B, FORREST K, SPACE B, MA S Q. A stable metal-organic framework featuring a local buffer environment for carbon dioxide fixation[J]. Angew. Chem.‒Int. Edit., 2018, 57(17): 4657-4662  doi: 10.1002/anie.201801122

    27. [27]

      JI H, NAVEEN K, LEE W, KIM T S, KIM D, CHO D H. Pyridinium-functionalized ionic metal-organic frameworks designed as bifunctional catalysts for CO2 fixation into cyclic carbonates[J]. ACS Appl. Mater. Interfaces, 2020, 12(22): 24868-24876  doi: 10.1021/acsami.0c05912

    28. [28]

      SHAFIQUE A, SALEEM R, KHAN R R M, SAEED Z, PERVAIZ M, LIAQAT M, HUSSAIN T, SUMMER M, SHARIF S. Metal-organic frameworks as heterogeneous catalysts for CO2 cycloaddition: A promising strategy for CO2 mitigation and utilization[J]. Mater. Today Chem., 2024, 41: 102296  doi: 10.1016/j.mtchem.2024.102296

    29. [29]

      QIN X L, YU X Y, SI J C, XIE S Y, SHI Z H, LIU X, LI C B, LI G H, LIU Y L. Two designed bimetallic sod-ZMOFs with ample active sites for CO2 capture and CO2 cycloaddition[J]. Chem. Eng. J., 2025, 516: 163674  doi: 10.1016/j.cej.2025.163674

    30. [30]

      LI X Y, MA L N, LIU Y, HOU L, WANG Y Y, ZHU Z H. Honeycomb metal-organic framework with lewis acidic and basic bifunctional sites: Selective adsorption and CO2 catalytic fixation[J]. ACS Appl. Mater. Interfaces, 2018, 10(13): 10965-10973  doi: 10.1021/acsami.8b01291

  • 加载中
    1. [1]

      Xiaogang YANGXinya ZHANGJing LIHuilin WANGMin LIXiaotian WEIXinci WULufang MA . Synthesis, structure, and photoelectric properties of Zinc(Ⅱ)-triphenylamine based metal-organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2078-2086. doi: 10.11862/CJIC.20250167

    2. [2]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    3. [3]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    4. [4]

      Ruige ZHANGZhe ZHANGHe ZHENGZhan SHI . Recent advances of metal-organic frameworks for alkaline electrocatalytic oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2011-2028. doi: 10.11862/CJIC.20250185

    5. [5]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    6. [6]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    7. [7]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    8. [8]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    9. [9]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    10. [10]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    11. [11]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    12. [12]

      Ping LIGeng TANXin HUANGFuxing SUNJiangtao JIAGuangshan ZHUJia LIUJiyang LI . Green synthesis of metal-organic frameworks with open metal sites for efficient ammonia capture. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2063-2068. doi: 10.11862/CJIC.20250020

    13. [13]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    14. [14]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    15. [15]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    16. [16]

      Ran YuChen HuRuili GuoRuonan LiuLixing XiaCenyu YangJianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032

    17. [17]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    18. [18]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    19. [19]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    20. [20]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

Metrics
  • PDF Downloads(0)
  • Abstract views(113)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return