Citation: Ling WANG, Weipeng YAN, Zhuoyi ZHENG, Sihan ZHU, Mingxian GONG, Xiangyu MA. Fabrication of biochar-supported nano zero-valent iron and its high-efficiency performance for Cr(Ⅵ) removal from wastewater[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(12): 2441-2454. doi: 10.11862/CJIC.20250264 shu

Fabrication of biochar-supported nano zero-valent iron and its high-efficiency performance for Cr(Ⅵ) removal from wastewater

  • Corresponding author: Ling WANG, 20121013@llu.edu.cn
  • Received Date: 12 August 2025
    Revised Date: 21 October 2025

Figures(9)

  • A novel composite material, ALBC@nZVI, was synthesized by loading nano zero-valent iron (nZVI) onto activated luffa-derived biochar (ALBC) via in-situ liquid-phase reduction. The ALBC was prepared through pyrolysis of natural porous luffa sponge at 600 ℃, followed by KOH activation at 800 ℃. The composite was characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectrometer, confirming the porous structure of ALBC and uniform dispersion of nZVI on its surface. The Cr(Ⅵ) removal performance was systematically investigated under varying pH values (2-8), adsorbent dosage (0.25-2.0 g·L-1), and reaction time (0-360 min). Results showed that ALBC@nZVI achieved a maximum adsorption capacity of 95.27 mg·g-1 and a removal efficiency of 95% at a pH of 2, with an adsorbent dosage of 1.00 g·L-1 and an initial Cr(Ⅵ) mass concentration of 100 mg·L-1. The adsorption process followed the Langmuir isotherm and pseudo-second-order kinetics, indicating monolayer chemisorption. X-ray photoelectron spectrometer (XPS) analysis reveals that the removal of Cr(Ⅵ) is synergistically driven by multidimensional mechanisms, including electrostatic attraction, redox reactions, and surface complexation-coprecipitation. The ALBC@nZVI exhibits the advantages of high adsorption performance, strong reducibility, and rapid magnetic separability (The specific saturation magnetization was 23.4 emu·g-1).
  • 加载中
    1. [1]

      FANG Y, WU X G, DAI M, LOPEZ-VALDIVIESO A, RAZA S, ALI I, PENG C S, LI J Y, NAZ I. The sequestration of aqueous Cr(Ⅵ) by zero valent iron-based materials: From synthesis to practical application[J]. J. Clean Prod., 2021,312127678. doi: 10.1016/j.jclepro.2021.127678

    2. [2]

      BASU A, JOHNSON T M. Determination of hexavalent chromium reduction using Cr stable isotopes: Isotopic fractionation factors for permeable reactive barrier materials[J]. Environ. Sci. Technol., 2012,46(10):5353-5360. doi: 10.1021/es204086y

    3. [3]

      PRADHAN D, SUKLA L B, SAWYER M, RAHMAN P K S M. Recent bioreduction of hexavalent chromium in wastewater treatment: A review[J]. J. Ind. Eng. Chem., 2017,55:1-20. doi: 10.1016/j.jiec.2017.06.040

    4. [4]

      XIE Y Q, LIN J, LIANG J, LI M H, FU Y W, WANG H T, TU S, LI J. Hypercrosslinked mesoporous poly (ionic liquid)s with high density of ion pairs: Efficient adsorbents for Cr(Ⅵ) removal via ion-exchange[J]. Chem. Eng. J., 2019,378122107. doi: 10.1016/j.cej.2019.122107

    5. [5]

      YIN H S, GUO Q, LEI C, CHEN W Q, HUANG B B. Electrochemical-driven carbocatalysis as highly efficient advanced oxidation processes for simultaneous removal of humic acid and Cr(Ⅵ)[J]. Chem. Eng. J., 2020,396125156. doi: 10.1016/j.cej.2020.125156

    6. [6]

      YUAN G Q, LI F L, LI K Z, LIU J, LI J Y, ZHANG S W, JIA Q L, ZHANG H J. Research progress on photocatalytic reduction of Cr(Ⅵ) in polluted water[J]. Bull. Chem. Soc. Jpn., 2021,94(4):1142-1155. doi: 10.1246/bcsj.20200317

    7. [7]

      LIU K Y, ZHAO D Y, HU Z F, XIAO Y, HE C, JIANG F, ZHAO N, ZHAO C F, ZHANG W X, QIU R L. The adsorption and reduction of anionic Cr(Ⅵ) in groundwater by novel iron carbide loaded on N-doped carbon nanotubes: Effects of Fe-confinement[J]. Chem. Eng. J., 2023,452139357. doi: 10.1016/j.cej.2022.139357

    8. [8]

      ZHANG Y, LI M, LI J C, YANG Y Y, LIU X. Surface modified leaves with high efficiency for the removal of aqueous Cr(Ⅵ)[J]. Appl. Surf. Sci., 2019,484:189-196. doi: 10.1016/j.apsusc.2019.04.088

    9. [9]

      BRITO-PEREIRA R, QUEIROS J M, CELAYA-AZCOAGA L, LUIZ R F, MARTINS P, LANCEROS-MENDEZ S. Hexavalent chromium dual water remediation and sensing based on hybrid polymer/metal- organic framework composites[J]. J. Environ. Chem. Eng., 202412.

    10. [10]

      ARIF M, LIU G, YOUSAF B, AHMED R, IRSHAD S, ASHRAF A, ZIA-UR-REHMAN M, RASHID M S. Synthesis, characteristics and mechanistic insight into the clays and clay minerals-biochar surface interactions for contaminants removal—A review[J]. J. Clean Prod., 2021,310127548. doi: 10.1016/j.jclepro.2021.127548

    11. [11]

      GUO Z B, CHENG M, REN W Q, WANG Z Q, ZHANG M H. Treated activated carbon as a metalfree catalyst for effectively catalytic reduction of toxic hexavalent chromium[J]. J. Hazard. Mater., 2022,430128416. doi: 10.1016/j.jhazmat.2022.128416

    12. [12]

      ABIDIN M Z U, IKRAM M, MOEEN S, NAZIR G, KANOUN M B, GOUMRI-SAID S. A comprehensive review on the synthesis of ferrite nanomaterials via bottom-up and top-down approaches advantages, disadvantages, characterizations and computational insights[J]. Coord. Chem. Rev., 2024,520216158. doi: 10.1016/j.ccr.2024.216158

    13. [13]

      ZHANG Y P, WANG J H, HUANG J M, HU Z. Preparation of magnetic mesoporous carbon loaded nano zero-valent ironfor removal of Cr(Ⅲ) organic complexes from high-salt wastewater[J]. Chinese. J. Inorg. Chem., 2024,40(9):1731-1742. doi: 10.11862/CJIC.20240077

    14. [14]

      SHI Y, WANG X, ZHONG S T, CHEN W W, FENG C P, YANG S P. Nano zero-valent iron/montmorillonite composite for the removal of Cr(Ⅵ) from aqueous solutions: Characterization, performance, and mechanistic insights[J]. Appl. Clay Sci., 2024,253107345. doi: 10.1016/j.clay.2024.107345

    15. [15]

      SUAZO-HERNÁNDEZ J, MANQUIAN-CERDA K, LUZ MORA M, MOLINA-ROCO M, ANGxELICA RUBIO M, SARKAR B, BOLAN N, ARANCIBIA-MIRANDA N. Efficient and selective removal of Se and As mixed contaminants from aqueous media by montmorillonite-nanoscale zero valent iron nanocomposite[J]. J. Hazard. Mater., 2021,403123639. doi: 10.1016/j.jhazmat.2020.123639

    16. [16]

      WANG H, ZHONG D J, XU Y L, CHANG H X, SHEN H Y, XU C Z, MOU J X, ZHONG N B. Enhanced removal of Cr(Ⅵ) from aqueous solution by nano-zero-valent iron supported by KOH activated sludge-based biochar[J]. Colloids Surf. A-Physicochem. Eng. Asp., 2022,651129697. doi: 10.1016/j.colsurfa.2022.129697

    17. [17]

      ZHAO M A, ZHANG C A, YANG X N, LIU L, WANG X Z, YIN W Q, LI Y C C, WANG S S, FU W Z. Preparation of highly-conductive pyrogenic carbon-supported zero-valent iron for enhanced Cr(Ⅵ) reduction[J]. J. Hazard. Mater., 2020,396122712. doi: 10.1016/j.jhazmat.2020.122712

    18. [18]

      GOPAL G, SANKAR H, NATARAJAN C, MUKHERJEE A. Tetracycline removal using green synthesized bimetallic nZVI-Cu and bentonite supported green nZVI-Cu nanocomposite: A comparative study[J]. J. Environ. Manage., 2020,254109812. doi: 10.1016/j.jenvman.2019.109812

    19. [19]

      WANG T, SU J, JIN X Y, CHEN Z L, MEGHARAJ M, NAIDU R. Functional clay supported bimetallic nZVI/Pd nanoparticles used for removal of methyl orange from aqueous solution[J]. J. Hazard. Mater., 2013,262:819-825. doi: 10.1016/j.jhazmat.2013.09.028

    20. [20]

      LIANG L P, XI F F, ZHAO J H, IMANOVA G, KOMARNENI S, MA J F. Synergistic effect of MIL-101(Cr) and nanoscale zero-valent iron (nZVI) for efficient removal of U(Ⅵ) and assessment of this composite to inactivate Escherichia coli[J]. Sep. Purif. Technol., 2025,360131053. doi: 10.1016/j.seppur.2024.131053

    21. [21]

      YU J F, FENG H P, TANG L, PANG Y, ZENG G M, LU Y, DONG H R, WANG J J, LIU Y, FENG C Y, WANG J J, PENG B, YE S J. Metal-free carbon materials for persulfate-based advanced oxidation process: Microstructure, property and tailoring[J]. Prog. Mater. Sci., 2020,111100654. doi: 10.1016/j.pmatsci.2020.100654

    22. [22]

      GAO F L, LYU H, AHMAD S, XU S Y, TANG J C. Enhanced reductive degradation of tetrabromobisphenol A by biochar supported sulfidated nanoscale zero-valent iron: Selectivity and core reactivity[J]. Appl. Catal. B-Environ., 2023,324122246. doi: 10.1016/j.apcatb.2022.122246

    23. [23]

      LI X J, LI W M, WANG S F, ZENG X F, JIA Y F. Synergistic enhancement of lindane removal by biochar-supported sulfidated nano zero-valent iron: Elucidating core-shell reactivity mechanism[J]. J. Environ. Chem. Eng., 2025,13117919. doi: 10.1016/j.jece.2025.117919

    24. [24]

      ZHAO X, HU J L, YANG Y, LIU M, WANG H N. Enhanced Cr(Ⅵ) removal from water by Fe-modified sewage sludge biochar: Influencing factors and mechanisms[J]. J. Environ. Chem. Eng., 2025,15117501.

    25. [25]

      XUE W J, WEN S Q, ZHU Y L, AL-DHABI N A, DAI J, XIONG H X, TANG W W, WANG R Z, LI J, XU Y Q. Optimized preparation of biochar-loaded sulfidized nanoscale zero-valent iron for the remediation performance and ecological effect assessment in Cd, Cu and Zn co-contaminated sediments[J]. J. Environ. Chem. Eng., 2025,15117852.

    26. [26]

      UN U T, ATES F, ERGINEL N, OZCAN O, ODUNCU E. Adsorption of disperse orange 30 dye onto activated carbon derived from Holm Oak (Quercus Ilex) acorns: A 3k factorial design and analysis[J]. J. Environ. Manage., 2015,155:89-96. doi: 10.1016/j.jenvman.2015.03.004

    27. [27]

      WANG L, ZHANG M G. Study on synthesis and magnetic properties of Nd2Fe14B nanoparticles prepared by hydrothermal method[J]. J. Magn. Magn. Mater., 2020,507166841. doi: 10.1016/j.jmmm.2020.166841

    28. [28]

      QU X L, FU H Y, MAO J D, RAN Y, ZHANG D N, ZHU D Q. Chemical and structural properties of dissolved black carbon released from biochars[J]. Carbon, 2016,96:759-767. doi: 10.1016/j.carbon.2015.09.106

    29. [29]

      MANDAL S, PU S, SHANGGUAN L X, LIU S B, MA H, ADHIKARI S, HOU D Y. Synergistic construction of green tea biochar supported nZVI for immobilization of lead in soil: A mechanistic investigation[J]. Environ. Int., 2020,135105374. doi: 10.1016/j.envint.2019.105374

    30. [30]

      KOKAB T, ASHRAF H S, SHAKOOR M B, JILANI A, AHMAD S R, MAJID M, ALI S, FARID N, ALGHAMDI R A, AL-QUWAIE D A. Effective removal of Cr(Ⅵ) from wastewater using biochar derived from walnut shell[J]. Int. J. Environ. Res. Public Health, 2021,18(18)9670. doi: 10.3390/ijerph18189670

    31. [31]

      HAO M G, WANG Q Y, YU F X, GUAN Z L, ZHANG X C, SUN Y C. Efficient degradation of 2, 4-dichlorophphenol in groundwater using persulfate activated by nitrogen-doped biochar-supported nano zero-valent iron[J]. J. Clean Prod., 2024,458142415. doi: 10.1016/j.jclepro.2024.142415

    32. [32]

      TIAN H R, HUANG C, WANG P, WEI J, LI X Y, ZHANG R M, LING D X, FENG C L, LIU H, WANG M X, LIU Z M. Enhanced elimination of Cr(Ⅵ) from aqueous media by polyethyleneimine modified corn straw biochar supported sulfide nanoscale zero valent iron: Performance and mechanism[J]. Bioresour. Technol., 2023,369128452. doi: 10.1016/j.biortech.2022.128452

    33. [33]

      LIU N, ZHANG Y T, XU C, LIU P, LV J, LIU Y Y, WANG Q Y. Removal mechanisms of aqueous Cr(Ⅵ) using apple wood biochar: A spectroscopic study[J]. J. Hazard. Mater., 2020,384121371. doi: 10.1016/j.jhazmat.2019.121371

    34. [34]

      SMITH M W, DALLMEYER I, JOHNSON T J, BRAUER C S, MCEWEN J S, ESPINAL J F, GARCIA-PEREZ M. Structural analysis of char by Raman spectroscopy: Improving band assignments through computational calculations from first principles[J]. Carbon, 2016,100:678-692. doi: 10.1016/j.carbon.2016.01.031

    35. [35]

      AMIN R, KHORSHIDI A, BENSCHW , SENKALE S, FARAMARZI M A. Degradation of sesame oil phenolics using magnetic immobilized laccase[J]. Catal. Lett., 2020,150:3086-3095. doi: 10.1007/s10562-020-03226-8

    36. [36]

      CHEN Y Y, WANG B Y, XIN J, SUN P, WU D. Adsorption behavior and mechanism of Cr(Ⅵ) by modified biochar derived from enteromorpha prolifera[J]. Ecotox. Environ. Safe., 2018,164:440-447. doi: 10.1016/j.ecoenv.2018.08.024

    37. [37]

      DAI J, ZHANG H L, CHEN N, WANG Y J, WANG J, YANG Z Y, FANG G D. Nitrogen configurations driving efficient elimination of Cr(Ⅵ) by nitrogen-doped biochar/zero-valent iron composites[J]. Chem. Eng. J., 2025,515163655. doi: 10.1016/j.cej.2025.163655

    38. [38]

      ZHAO C, ZHANG M, ZHANG Y X, JIANG L D, TAO J L, WEN J H. Fabrication of iron incorporated engineering architectures with exceptional antioxidant capacity and remarkable stability aerogels for synergistic chemical reduction and adsorptive removal of Cr(Ⅵ) from wastewater[J]. Sep. Purif. Technol., 2025,373133584. doi: 10.1016/j.seppur.2025.133584

    39. [39]

      LI T, HE Y H, WANG J W, XIANG H C, XU X L, LI C, WU Z S. Bioreduction of hexavalent chromium via Bacillus subtilis SL-44 enhanced by humic acid: An effective strategy for detoxification and immobilization of chromium[J]. Sci. Total Environ., 2023,888164246. doi: 10.1016/j.scitotenv.2023.164246

    40. [40]

      ZHANG Y, LI X J, CHEN J F, WANG Y Y, CHENG Z Y, CHEN X Q, GAO X, GUO M H. Porous spherical Cu2O supported by wood-based biochar skeleton for the adsorption-photocatalytic degradation of methyl orange[J]. Appl. Surf. Sci., 2023,611155744.

    41. [41]

      SHI Y Y, SHAN R, LU L L, YUAN H R, JIANG H, ZHANG Y Y, CHEN Y. High-efficiency removal of Cr(Ⅵ) by modified biochar derived from glue residue[J]. J. Clean Prod., 2020,254119935. doi: 10.1016/j.jclepro.2019.119935

    42. [42]

      HE R, YUAN X Z, HUANG Z L, WANG H, JIANG LB, HUANG J, TAN M J, LI H. Activated biochar with iron-loading and its application in removing Cr(Ⅵ) from aqueous solution[J]. Colloid. Surf. A-Physicochem. Eng. Asp., 2019,579123642.

    43. [43]

      MON P P, CHO P P, CHANADANA L, ASHOK KUMAR K V, DOBHAL S, SHASHIDHAR T, MADRAS G. Bio-waste assisted phase transformation of Fe3O4/carbon to nZVI/graphene composites and its application in reductive elimination of Cr(Ⅵ) removal from aquifer[J]. Sep. Purif. Technol., 2023,306122632.

    44. [44]

      LIU X Y, LIU W T, CHI Z F. Reduced graphene oxide supported nanoscale zero-valent iron (nZVI/rGO) for in-situ remediation of Cr(Ⅵ)/nitrate-polluted aquifer[J]. J. Water Process Eng., 2022,49103188. doi: 10.1016/j.jwpe.2022.103188

    45. [45]

      LI X Y, AI L H, JIANG J. Nanoscale zerovalent iron decorated on graphene nanosheets for Cr(Ⅵ) removal from aqueous solution: Surface corrosion retard induced the enhanced performance[J]. Chem. Eng. J., 2016,288:789-797.

    46. [46]

      IFTHIKAR J, IBRAN SHAHIB I, JAWAD A, GENDY E A, WANG S Q, WU B B, CHEN Z Q, CHEN Z L. The excursion covered for the elimination of chromate by exploring the coordination mechanisms between chromium species and various functional groups[J]. Coord. Chem. Rev., 2021,437213868.

    47. [47]

      ZHANG M Y, YI K X, ZHANG X W, HAN P, LIU W, TONG M P. Modification of zero valent iron nanoparticles by sodium alginate and bentonite: Enhanced transport, effective hexavalent chromium removal and reduced bacterial toxicity[J]. J. Hazard. Mater., 2020,388121822.

    48. [48]

      XU Z B, XU X Y, ZHANG Y, YU Y L, CAO X D. Pyrolysis-temperature depended electron donating and mediating mechanisms of biochar for Cr(Ⅵ) reduction[J]. J. Hazard. Mater., 2020,388121794.

  • 加载中
    1. [1]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    2. [2]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    3. [3]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    4. [4]

      Ziyang LongQuanzheng LiChengliang ZhangHaifeng Shi . BiVO4/WO3-x S-scheme heterojunctions with amplified internal electric field for boosting photothermal-catalytic activity. Acta Physico-Chimica Sinica, 2025, 41(10): 100122-0. doi: 10.1016/j.actphy.2025.100122

    5. [5]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    6. [6]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    7. [7]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    8. [8]

      Zhongsen WangLijun QiuYunhua HuangMeng ZhangXi CaiFanyu WangYang LinYanbiao ShiXiao Liu . Alcohothermal synthesis of sulfidated zero-valent iron for enhanced Cr(Ⅵ) removal. Chinese Chemical Letters, 2024, 35(7): 109195-. doi: 10.1016/j.cclet.2023.109195

    9. [9]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    10. [10]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    11. [11]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    12. [12]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    13. [13]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    14. [14]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

    15. [15]

      Ting-Ting HuangJin-Fa ChenJuan LiuTai-Bao WeiHong YaoBingbing ShiQi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281

    16. [16]

      Yan-Kai ZhangYong-Zheng ZhangChun-Xiao JiaFang WangXiuling ZhangYuhang WuZhongmin LiuHui HuDa-Shuai ZhangLonglong GengJing XuHongliang Huang . A stable Zn-MOF with anthracene-based linker for Cr(VI) photocatalytic reduction under sunlight irradiation. Chinese Chemical Letters, 2024, 35(12): 109756-. doi: 10.1016/j.cclet.2024.109756

    17. [17]

      Quanquan LiChenzhu ZhaoShanshan JiaQiang ChenXusheng LiMengyao SheHua LiuPing LiuYaoyu WangJianli Li . Design and fabrication of CuI/CuII-MOF-incorporated hydrogel photocatalysts for synergy removal of Cr(VI) and congo red. Chinese Chemical Letters, 2025, 36(5): 109936-. doi: 10.1016/j.cclet.2024.109936

    18. [18]

      Xiaoqiang WangFangyuan ZhouYue LiuZhongbiao Wu . CePO4 supported Cr catalyst with superior sulfur tolerance for selective catalytic oxidation of ammonia. Chinese Chemical Letters, 2025, 36(7): 110420-. doi: 10.1016/j.cclet.2024.110420

    19. [19]

      Zhu WangShuangqiu HuangDanni GuoWenhao LaoYiping FengTong LiZhao-Qing LiuChun Hu . Reductive sequestration of Cr(Ⅵ) from water by an all-in-one polypyrrole/NiFe-layered double hydroxide filter. Chinese Chemical Letters, 2025, 36(12): 111090-. doi: 10.1016/j.cclet.2025.111090

    20. [20]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

Metrics
  • PDF Downloads(0)
  • Abstract views(144)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return