Fabrication of biochar-supported nano zero-valent iron and its high-efficiency performance for Cr(Ⅵ) removal from wastewater
- Corresponding author: Ling WANG, 20121013@llu.edu.cn
Citation:
Ling WANG, Weipeng YAN, Zhuoyi ZHENG, Sihan ZHU, Mingxian GONG, Xiangyu MA. Fabrication of biochar-supported nano zero-valent iron and its high-efficiency performance for Cr(Ⅵ) removal from wastewater[J]. Chinese Journal of Inorganic Chemistry,
;2025, 41(12): 2441-2454.
doi:
10.11862/CJIC.20250264
FANG Y, WU X G, DAI M, LOPEZ-VALDIVIESO A, RAZA S, ALI I, PENG C S, LI J Y, NAZ I. The sequestration of aqueous Cr(Ⅵ) by zero valent iron-based materials: From synthesis to practical application[J]. J. Clean Prod., 2021,312127678. doi: 10.1016/j.jclepro.2021.127678
BASU A, JOHNSON T M. Determination of hexavalent chromium reduction using Cr stable isotopes: Isotopic fractionation factors for permeable reactive barrier materials[J]. Environ. Sci. Technol., 2012,46(10):5353-5360. doi: 10.1021/es204086y
PRADHAN D, SUKLA L B, SAWYER M, RAHMAN P K S M. Recent bioreduction of hexavalent chromium in wastewater treatment: A review[J]. J. Ind. Eng. Chem., 2017,55:1-20. doi: 10.1016/j.jiec.2017.06.040
XIE Y Q, LIN J, LIANG J, LI M H, FU Y W, WANG H T, TU S, LI J. Hypercrosslinked mesoporous poly (ionic liquid)s with high density of ion pairs: Efficient adsorbents for Cr(Ⅵ) removal via ion-exchange[J]. Chem. Eng. J., 2019,378122107. doi: 10.1016/j.cej.2019.122107
YIN H S, GUO Q, LEI C, CHEN W Q, HUANG B B. Electrochemical-driven carbocatalysis as highly efficient advanced oxidation processes for simultaneous removal of humic acid and Cr(Ⅵ)[J]. Chem. Eng. J., 2020,396125156. doi: 10.1016/j.cej.2020.125156
YUAN G Q, LI F L, LI K Z, LIU J, LI J Y, ZHANG S W, JIA Q L, ZHANG H J. Research progress on photocatalytic reduction of Cr(Ⅵ) in polluted water[J]. Bull. Chem. Soc. Jpn., 2021,94(4):1142-1155. doi: 10.1246/bcsj.20200317
LIU K Y, ZHAO D Y, HU Z F, XIAO Y, HE C, JIANG F, ZHAO N, ZHAO C F, ZHANG W X, QIU R L. The adsorption and reduction of anionic Cr(Ⅵ) in groundwater by novel iron carbide loaded on N-doped carbon nanotubes: Effects of Fe-confinement[J]. Chem. Eng. J., 2023,452139357. doi: 10.1016/j.cej.2022.139357
ZHANG Y, LI M, LI J C, YANG Y Y, LIU X. Surface modified leaves with high efficiency for the removal of aqueous Cr(Ⅵ)[J]. Appl. Surf. Sci., 2019,484:189-196. doi: 10.1016/j.apsusc.2019.04.088
BRITO-PEREIRA R, QUEIROS J M, CELAYA-AZCOAGA L, LUIZ R F, MARTINS P, LANCEROS-MENDEZ S. Hexavalent chromium dual water remediation and sensing based on hybrid polymer/metal- organic framework composites[J]. J. Environ. Chem. Eng., 202412.
ARIF M, LIU G, YOUSAF B, AHMED R, IRSHAD S, ASHRAF A, ZIA-UR-REHMAN M, RASHID M S. Synthesis, characteristics and mechanistic insight into the clays and clay minerals-biochar surface interactions for contaminants removal—A review[J]. J. Clean Prod., 2021,310127548. doi: 10.1016/j.jclepro.2021.127548
GUO Z B, CHENG M, REN W Q, WANG Z Q, ZHANG M H. Treated activated carbon as a metalfree catalyst for effectively catalytic reduction of toxic hexavalent chromium[J]. J. Hazard. Mater., 2022,430128416. doi: 10.1016/j.jhazmat.2022.128416
ABIDIN M Z U, IKRAM M, MOEEN S, NAZIR G, KANOUN M B, GOUMRI-SAID S. A comprehensive review on the synthesis of ferrite nanomaterials via bottom-up and top-down approaches advantages, disadvantages, characterizations and computational insights[J]. Coord. Chem. Rev., 2024,520216158. doi: 10.1016/j.ccr.2024.216158
ZHANG Y P, WANG J H, HUANG J M, HU Z. Preparation of magnetic mesoporous carbon loaded nano zero-valent ironfor removal of Cr(Ⅲ) organic complexes from high-salt wastewater[J]. Chinese. J. Inorg. Chem., 2024,40(9):1731-1742. doi: 10.11862/CJIC.20240077
SHI Y, WANG X, ZHONG S T, CHEN W W, FENG C P, YANG S P. Nano zero-valent iron/montmorillonite composite for the removal of Cr(Ⅵ) from aqueous solutions: Characterization, performance, and mechanistic insights[J]. Appl. Clay Sci., 2024,253107345. doi: 10.1016/j.clay.2024.107345
SUAZO-HERNÁNDEZ J, MANQUIAN-CERDA K, LUZ MORA M, MOLINA-ROCO M, ANGxELICA RUBIO M, SARKAR B, BOLAN N, ARANCIBIA-MIRANDA N. Efficient and selective removal of SeⅥ and AsⅤ mixed contaminants from aqueous media by montmorillonite-nanoscale zero valent iron nanocomposite[J]. J. Hazard. Mater., 2021,403123639. doi: 10.1016/j.jhazmat.2020.123639
WANG H, ZHONG D J, XU Y L, CHANG H X, SHEN H Y, XU C Z, MOU J X, ZHONG N B. Enhanced removal of Cr(Ⅵ) from aqueous solution by nano-zero-valent iron supported by KOH activated sludge-based biochar[J]. Colloids Surf. A-Physicochem. Eng. Asp., 2022,651129697. doi: 10.1016/j.colsurfa.2022.129697
ZHAO M A, ZHANG C A, YANG X N, LIU L, WANG X Z, YIN W Q, LI Y C C, WANG S S, FU W Z. Preparation of highly-conductive pyrogenic carbon-supported zero-valent iron for enhanced Cr(Ⅵ) reduction[J]. J. Hazard. Mater., 2020,396122712. doi: 10.1016/j.jhazmat.2020.122712
GOPAL G, SANKAR H, NATARAJAN C, MUKHERJEE A. Tetracycline removal using green synthesized bimetallic nZVI-Cu and bentonite supported green nZVI-Cu nanocomposite: A comparative study[J]. J. Environ. Manage., 2020,254109812. doi: 10.1016/j.jenvman.2019.109812
WANG T, SU J, JIN X Y, CHEN Z L, MEGHARAJ M, NAIDU R. Functional clay supported bimetallic nZVI/Pd nanoparticles used for removal of methyl orange from aqueous solution[J]. J. Hazard. Mater., 2013,262:819-825. doi: 10.1016/j.jhazmat.2013.09.028
LIANG L P, XI F F, ZHAO J H, IMANOVA G, KOMARNENI S, MA J F. Synergistic effect of MIL-101(Cr) and nanoscale zero-valent iron (nZVI) for efficient removal of U(Ⅵ) and assessment of this composite to inactivate Escherichia coli[J]. Sep. Purif. Technol., 2025,360131053. doi: 10.1016/j.seppur.2024.131053
YU J F, FENG H P, TANG L, PANG Y, ZENG G M, LU Y, DONG H R, WANG J J, LIU Y, FENG C Y, WANG J J, PENG B, YE S J. Metal-free carbon materials for persulfate-based advanced oxidation process: Microstructure, property and tailoring[J]. Prog. Mater. Sci., 2020,111100654. doi: 10.1016/j.pmatsci.2020.100654
GAO F L, LYU H, AHMAD S, XU S Y, TANG J C. Enhanced reductive degradation of tetrabromobisphenol A by biochar supported sulfidated nanoscale zero-valent iron: Selectivity and core reactivity[J]. Appl. Catal. B-Environ., 2023,324122246. doi: 10.1016/j.apcatb.2022.122246
LI X J, LI W M, WANG S F, ZENG X F, JIA Y F. Synergistic enhancement of lindane removal by biochar-supported sulfidated nano zero-valent iron: Elucidating core-shell reactivity mechanism[J]. J. Environ. Chem. Eng., 2025,13117919. doi: 10.1016/j.jece.2025.117919
ZHAO X, HU J L, YANG Y, LIU M, WANG H N. Enhanced Cr(Ⅵ) removal from water by Fe-modified sewage sludge biochar: Influencing factors and mechanisms[J]. J. Environ. Chem. Eng., 2025,15117501.
XUE W J, WEN S Q, ZHU Y L, AL-DHABI N A, DAI J, XIONG H X, TANG W W, WANG R Z, LI J, XU Y Q. Optimized preparation of biochar-loaded sulfidized nanoscale zero-valent iron for the remediation performance and ecological effect assessment in Cd, Cu and Zn co-contaminated sediments[J]. J. Environ. Chem. Eng., 2025,15117852.
UN U T, ATES F, ERGINEL N, OZCAN O, ODUNCU E. Adsorption of disperse orange 30 dye onto activated carbon derived from Holm Oak (Quercus Ilex) acorns: A 3k factorial design and analysis[J]. J. Environ. Manage., 2015,155:89-96. doi: 10.1016/j.jenvman.2015.03.004
WANG L, ZHANG M G. Study on synthesis and magnetic properties of Nd2Fe14B nanoparticles prepared by hydrothermal method[J]. J. Magn. Magn. Mater., 2020,507166841. doi: 10.1016/j.jmmm.2020.166841
QU X L, FU H Y, MAO J D, RAN Y, ZHANG D N, ZHU D Q. Chemical and structural properties of dissolved black carbon released from biochars[J]. Carbon, 2016,96:759-767. doi: 10.1016/j.carbon.2015.09.106
MANDAL S, PU S, SHANGGUAN L X, LIU S B, MA H, ADHIKARI S, HOU D Y. Synergistic construction of green tea biochar supported nZVI for immobilization of lead in soil: A mechanistic investigation[J]. Environ. Int., 2020,135105374. doi: 10.1016/j.envint.2019.105374
KOKAB T, ASHRAF H S, SHAKOOR M B, JILANI A, AHMAD S R, MAJID M, ALI S, FARID N, ALGHAMDI R A, AL-QUWAIE D A. Effective removal of Cr(Ⅵ) from wastewater using biochar derived from walnut shell[J]. Int. J. Environ. Res. Public Health, 2021,18(18)9670. doi: 10.3390/ijerph18189670
HAO M G, WANG Q Y, YU F X, GUAN Z L, ZHANG X C, SUN Y C. Efficient degradation of 2, 4-dichlorophphenol in groundwater using persulfate activated by nitrogen-doped biochar-supported nano zero-valent iron[J]. J. Clean Prod., 2024,458142415. doi: 10.1016/j.jclepro.2024.142415
TIAN H R, HUANG C, WANG P, WEI J, LI X Y, ZHANG R M, LING D X, FENG C L, LIU H, WANG M X, LIU Z M. Enhanced elimination of Cr(Ⅵ) from aqueous media by polyethyleneimine modified corn straw biochar supported sulfide nanoscale zero valent iron: Performance and mechanism[J]. Bioresour. Technol., 2023,369128452. doi: 10.1016/j.biortech.2022.128452
LIU N, ZHANG Y T, XU C, LIU P, LV J, LIU Y Y, WANG Q Y. Removal mechanisms of aqueous Cr(Ⅵ) using apple wood biochar: A spectroscopic study[J]. J. Hazard. Mater., 2020,384121371. doi: 10.1016/j.jhazmat.2019.121371
SMITH M W, DALLMEYER I, JOHNSON T J, BRAUER C S, MCEWEN J S, ESPINAL J F, GARCIA-PEREZ M. Structural analysis of char by Raman spectroscopy: Improving band assignments through computational calculations from first principles[J]. Carbon, 2016,100:678-692. doi: 10.1016/j.carbon.2016.01.031
AMIN R, KHORSHIDI A, BENSCHW , SENKALE S, FARAMARZI M A. Degradation of sesame oil phenolics using magnetic immobilized laccase[J]. Catal. Lett., 2020,150:3086-3095. doi: 10.1007/s10562-020-03226-8
CHEN Y Y, WANG B Y, XIN J, SUN P, WU D. Adsorption behavior and mechanism of Cr(Ⅵ) by modified biochar derived from enteromorpha prolifera[J]. Ecotox. Environ. Safe., 2018,164:440-447. doi: 10.1016/j.ecoenv.2018.08.024
DAI J, ZHANG H L, CHEN N, WANG Y J, WANG J, YANG Z Y, FANG G D. Nitrogen configurations driving efficient elimination of Cr(Ⅵ) by nitrogen-doped biochar/zero-valent iron composites[J]. Chem. Eng. J., 2025,515163655. doi: 10.1016/j.cej.2025.163655
ZHAO C, ZHANG M, ZHANG Y X, JIANG L D, TAO J L, WEN J H. Fabrication of iron incorporated engineering architectures with exceptional antioxidant capacity and remarkable stability aerogels for synergistic chemical reduction and adsorptive removal of Cr(Ⅵ) from wastewater[J]. Sep. Purif. Technol., 2025,373133584. doi: 10.1016/j.seppur.2025.133584
LI T, HE Y H, WANG J W, XIANG H C, XU X L, LI C, WU Z S. Bioreduction of hexavalent chromium via Bacillus subtilis SL-44 enhanced by humic acid: An effective strategy for detoxification and immobilization of chromium[J]. Sci. Total Environ., 2023,888164246. doi: 10.1016/j.scitotenv.2023.164246
ZHANG Y, LI X J, CHEN J F, WANG Y Y, CHENG Z Y, CHEN X Q, GAO X, GUO M H. Porous spherical Cu2O supported by wood-based biochar skeleton for the adsorption-photocatalytic degradation of methyl orange[J]. Appl. Surf. Sci., 2023,611155744.
SHI Y Y, SHAN R, LU L L, YUAN H R, JIANG H, ZHANG Y Y, CHEN Y. High-efficiency removal of Cr(Ⅵ) by modified biochar derived from glue residue[J]. J. Clean Prod., 2020,254119935. doi: 10.1016/j.jclepro.2019.119935
HE R, YUAN X Z, HUANG Z L, WANG H, JIANG LB, HUANG J, TAN M J, LI H. Activated biochar with iron-loading and its application in removing Cr(Ⅵ) from aqueous solution[J]. Colloid. Surf. A-Physicochem. Eng. Asp., 2019,579123642.
MON P P, CHO P P, CHANADANA L, ASHOK KUMAR K V, DOBHAL S, SHASHIDHAR T, MADRAS G. Bio-waste assisted phase transformation of Fe3O4/carbon to nZVI/graphene composites and its application in reductive elimination of Cr(Ⅵ) removal from aquifer[J]. Sep. Purif. Technol., 2023,306122632.
LIU X Y, LIU W T, CHI Z F. Reduced graphene oxide supported nanoscale zero-valent iron (nZVI/rGO) for in-situ remediation of Cr(Ⅵ)/nitrate-polluted aquifer[J]. J. Water Process Eng., 2022,49103188. doi: 10.1016/j.jwpe.2022.103188
LI X Y, AI L H, JIANG J. Nanoscale zerovalent iron decorated on graphene nanosheets for Cr(Ⅵ) removal from aqueous solution: Surface corrosion retard induced the enhanced performance[J]. Chem. Eng. J., 2016,288:789-797.
IFTHIKAR J, IBRAN SHAHIB I, JAWAD A, GENDY E A, WANG S Q, WU B B, CHEN Z Q, CHEN Z L. The excursion covered for the elimination of chromate by exploring the coordination mechanisms between chromium species and various functional groups[J]. Coord. Chem. Rev., 2021,437213868.
ZHANG M Y, YI K X, ZHANG X W, HAN P, LIU W, TONG M P. Modification of zero valent iron nanoparticles by sodium alginate and bentonite: Enhanced transport, effective hexavalent chromium removal and reduced bacterial toxicity[J]. J. Hazard. Mater., 2020,388121822.
XU Z B, XU X Y, ZHANG Y, YU Y L, CAO X D. Pyrolysis-temperature depended electron donating and mediating mechanisms of biochar for Cr(Ⅵ) reduction[J]. J. Hazard. Mater., 2020,388121794.
Yuanpei ZHANG , Jiahong WANG , Jinming HUANG , Zhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077
Yang ZHOU , Lili YAN , Wenjuan ZHANG , Pinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032
Jie ZHANG , Xin LIU , Zhixin LI , Yuting PEI , Yuqi YANG , Huimin LI , Zhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310
Ziyang Long , Quanzheng Li , Chengliang Zhang , Haifeng Shi . BiVO4/WO3-x S-scheme heterojunctions with amplified internal electric field for boosting photothermal-catalytic activity. Acta Physico-Chimica Sinica, 2025, 41(10): 100122-0. doi: 10.1016/j.actphy.2025.100122
Xiaosong PU , Hangkai WU , Taohong LI , Huijuan LI , Shouqing LIU , Yuanbo HUANG , Xuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030
Xinxin YU , Yongxing LIU , Xiaohong YI , Miao CHANG , Fei WANG , Peng WANG , Chongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438
Shasha Ma , Zujin Yang , Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008
Zhongsen Wang , Lijun Qiu , Yunhua Huang , Meng Zhang , Xi Cai , Fanyu Wang , Yang Lin , Yanbiao Shi , Xiao Liu . Alcohothermal synthesis of sulfidated zero-valent iron for enhanced Cr(Ⅵ) removal. Chinese Chemical Letters, 2024, 35(7): 109195-. doi: 10.1016/j.cclet.2023.109195
Yongjie ZHANG , Bintong HUANG , Yueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247
Huanhuan XIE , Yingnan SONG , Lei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281
Jingke LIU , Jia CHEN , Yingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060
Jianfeng Yan , Yating Xiao , Xin Zuo , Caixia Lin , Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005
Wang Wang , Yucheng Liu , Shengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059
Shuqi Yu , Yu Yang , Keisuke Kuroda , Jian Pu , Rui Guo , Li-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130
Ting-Ting Huang , Jin-Fa Chen , Juan Liu , Tai-Bao Wei , Hong Yao , Bingbing Shi , Qi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281
Yan-Kai Zhang , Yong-Zheng Zhang , Chun-Xiao Jia , Fang Wang , Xiuling Zhang , Yuhang Wu , Zhongmin Liu , Hui Hu , Da-Shuai Zhang , Longlong Geng , Jing Xu , Hongliang Huang . A stable Zn-MOF with anthracene-based linker for Cr(VI) photocatalytic reduction under sunlight irradiation. Chinese Chemical Letters, 2024, 35(12): 109756-. doi: 10.1016/j.cclet.2024.109756
Quanquan Li , Chenzhu Zhao , Shanshan Jia , Qiang Chen , Xusheng Li , Mengyao She , Hua Liu , Ping Liu , Yaoyu Wang , Jianli Li . Design and fabrication of CuI/CuII-MOF-incorporated hydrogel photocatalysts for synergy removal of Cr(VI) and congo red. Chinese Chemical Letters, 2025, 36(5): 109936-. doi: 10.1016/j.cclet.2024.109936
Xiaoqiang Wang , Fangyuan Zhou , Yue Liu , Zhongbiao Wu . CePO4 supported Cr catalyst with superior sulfur tolerance for selective catalytic oxidation of ammonia. Chinese Chemical Letters, 2025, 36(7): 110420-. doi: 10.1016/j.cclet.2024.110420
Zhu Wang , Shuangqiu Huang , Danni Guo , Wenhao Lao , Yiping Feng , Tong Li , Zhao-Qing Liu , Chun Hu . Reductive sequestration of Cr(Ⅵ) from water by an all-in-one polypyrrole/NiFe-layered double hydroxide filter. Chinese Chemical Letters, 2025, 36(12): 111090-. doi: 10.1016/j.cclet.2025.111090
Jinghan ZHANG , Guanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249