Citation: Ruoxi RUN, Jikai ZHU, Lixia HAN, Zhiyin XIAO, Xiujuan JIANG, Jing JIN. Red light-induced CO-release from manganese carbonyl complexes[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(12): 2575-2583. doi: 10.11862/CJIC.20250132 shu

Red light-induced CO-release from manganese carbonyl complexes

Figures(9)

  • In this work, three manganese carbonyl complexes [Mn(CO)3(quino(CH=N)phX)Br] [X=Cl (1), Br (2), I (3)] were synthesized by a one-pot method using quinoline-2-carbaldehyde, halogenated aniline, and manganese pentacarbonyl bromide as starting materials. The structures of these complexes were characterized by NMR spectroscopy, single-crystal X-ray diffraction, infrared spectroscopy, and UV-Vis spectroscopy. Furthermore, the decomposition of these complexes under low-energy LED red light (λ=622-770 nm) was investigated by infrared spectroscopy and ultraviolet spectroscopy. The results indicate that these complexes exhibit excellent stability under dark conditions, while rapidly decomposing with carbon monoxide release (CO) upon irradiation of LED red light. Kinetic analysis revealed that the CO-releasing processes follow a first-order kinetic model, with the electronic effects of halogen substituents (Cl/Br/I) exerting significant influence on reaction rates. That is, the stronger the electron donor ability of the complex, the faster the reaction rate. Furthermore, the energy of the light source also plays a crucial role in the decomposition reaction of these complexes. Under certain conditions, the higher the light energy, the faster the decomposition rate of the complexes. Myoglobin assays further confirmed the generation of CO gas from complex 3 under light irradiation. Biocompatibility studies demonstrated significant cytotoxic effects of these complexes against cancer cells (RT112, IC50=2-13 μmol·L-1).
  • 加载中
    1. [1]

      MOTTERLINI R, CLARK J E, FORESTI R, SARATHCHANDRA P, MANN B E, GREEN C J. Carbon monoxide-releasing molecules‒Characterization of biochemical and vascular activities[J]. Circ. Res., 2002, 90(2): E17-E24

    2. [2]

      MARKS G S, BRIEN J F, NAKATSU K, MCLAUGHLIN B E. Does carbon monoxide have a physiological function?[J]. Trends Pharmacol. Sci., 1991, 12: 185-188  doi: 10.1016/0165-6147(91)90544-3

    3. [3]

      OTTERBEIN L E, ZUCKERBRAUN B S, HAGA M, LIU F, SONG R, USHEVA A, STACHULAK C, BODYAK N, SMITH R N, CSIZMADIA E, TYAGI S, AKAMATSU Y, FLAVELL R J, BILLIAR T R, TZENG E, BACH F H, CHOI A M, SOARES M P. Carbon monoxide suppresses arteriosclerotic lesions associated with chronic graft rejection and with balloon injury[J]. Nat. Med., 2003, 9(2): 183-190  doi: 10.1038/nm817

    4. [4]

      NETO J S, NAKAO A, KIMIZUKA K, ROMANOSKY A J, STOLZ D B, UCHIYAMA T, NALESNIK M A, OTTERBEIN L E, MURASE N. Protection of transplant-induced renal ischemia-reperfusion injury with carbon monoxide[J]. Am. J. Physiol. ‒Renal Physiol., 2004, 287(5): F979-F989  doi: 10.1152/ajprenal.00158.2004

    5. [5]

      MOTTERLINI R, OTTERBEIN L E. The therapeutic potential of carbon monoxide[J]. Nat. Rev. Drug Discov., 2010, 9(9): 728-743  doi: 10.1038/nrd3228

    6. [6]

      WU M L, HO Y C, YET S F. A central role of heme oxygenase-1 in cardiovascular protection[J]. Antioxid. Redox Signal., 2011, 15(7): 1835-1846  doi: 10.1089/ars.2010.3726

    7. [7]

      WU L Y, WANG R. Carbon monoxide: Endogenous production, physiological functions, and pharmacological applications[J]. Pharmacol. Rev., 2005, 57(4): 585-630

    8. [8]

      SCHATZSCHNEIDER U. Novel lead structures and activation mechanisms for CO-releasing molecules (CORMs)[J]. Brit. J. Pharmacol., 2015, 172(6): 1638-1650  doi: 10.1111/bph.12688

    9. [9]

      HALILOVIC A, PATIL K A, BELLNER L, MARRAZZO G, CASTELLANO K, CULLARO G, DUNN M W, SCHWARTZMAN M L. Knockdown of heme oxygenase-2 impairs corneal epithelial cell wound healing[J]. J. Cell. Physiol., 2011, 226(7): 1732-1740  doi: 10.1002/jcp.22502

    10. [10]

      MANSOUR A M, KHALED R M, SHEHAB O R. A comprehensive survey of Mn(Ⅰ) carbonyls as CO-releasing molecules reported over the last two decades[J]. Dalton Trans., 2024, 53(48): 19022-19057  doi: 10.1039/D4DT02091J

    11. [11]

      MANSOUR A M, KHALED R M, FERRARO G, SHEHAB O R, MERLINO A. Metal-based carbon monoxide releasing molecules with promising cytotoxic properties[J]. Dalton Trans., 2024, 53(23): 9612-9656  doi: 10.1039/D4DT00087K

    12. [12]

      BAG G, MUSIB D, RAZA M K, CASTONGUAY A, ROY M. Recent advances on the photo-chemotherapeutic potential of manganese carbonyl complexes[J]. Polyhedron, 2024, 249: 116778  doi: 10.1016/j.poly.2023.116778

    13. [13]

      KHAN H, FAIZAN M, NIAZI S U K, MUHAMMAD M N, ZHANG W. Water-soluble carbon monoxide-releasing molecules (CORMs)[J]. Top. Curr. Chem., 2023, 381(1): 3

    14. [14]

      ADACH W, BŁASZCZYK M, OLAS B. Carbon monoxide and its donors‒Chemical and biological properties[J]. Chem. ‒Biol. Interact., 2020, 318: 108973  doi: 10.1016/j.cbi.2020.108973

    15. [15]

      YAN H, DU J, ZHU S, NIE G, ZHANG H, GU Z, ZHAO Y. Emerging delivery strategies of carbon monoxide for therapeutic applications: From CO gas to CO releasing nanomaterials[J]. Small, 2019, 15(49): 1904382  doi: 10.1002/smll.201904382

    16. [16]

      FORD P C. Metal complex strategies for photo-uncaging the small molecule bioregulators nitric oxide and carbon monoxide[J]. Coord. Chem. Rev., 2018, 376: 548-564

    17. [17]

      LIU J, LI R S, HE M, XU Z, XU L Q, KANG Y, XUE P. Multifunctional SGQDs-CORM@HA nanosheets for bacterial eradication through cascade-activated "nanoknife" effect and photodynamic/CO gas therapy[J]. Biomaterials, 2021, 277: 121084

    18. [18]

      MEDE R, LORETT-VELASQUEZ V P, KLEIN M, GOERLS H, SCHMITT M, GESSNER G, HEINEMANN S H, POPP J, WESTERHAUSEN M. Carbon monoxide release properties and molecular structures of phenylthiolatomanganese(Ⅰ) carbonyl complexes of the type (OC)4Mn(μ-S-aryl)2[J]. Dalton Trans., 2015, 44(7): 3020-3033

    19. [19]

      NOMURA N, TANAKA S, HIROTSU M, NISHIOKA T, NAKAJIMA H. Red-light responsive photoCORM activated in aqueous acid solution[J]. J. Organomet. Chem., 2023, 984: 122578

    20. [20]

      HEMMERSBACH L, ADAM R, PLEVNALI C, ZHANG X, YARD B, SCHMALZ H G. Synthesis of bifunctional lipoxin-derived enzyme-triggered CO-releasing molecules (LipET-CORMs)[J]. Eur. J. Org. Chem., 2023, 26(9): e202201424

    21. [21]

      JIANG X J, LONG L, WANG H L, CHEN L M, LIU X M. Diiron hexacarbonyl complexes as potential CO-RMs: CO-releasing initiated by a substitution reaction with cysteamine and structural correlation to the bridging linkage[J]. Dalton Trans., 2014, 43(26): 9968-9975

    22. [22]

      KUNZ P C, MEYER H, BARTHEL J, SOLLAZZO S, SCHMIDT A M, JANIAK C. Metal carbonyls supported on iron oxide nanoparticles to trigger the CO-gasotransmitter release by magnetic heating[J]. Chem. Commun., 2013, 49(43): 4896-4898

    23. [23]

      KOTTELAT E, FABIO Z. Visible light-activated PhotoCORMs[J]. Inorganics, 2017, 5(2): 692-710

    24. [24]

      PIERRI A E, MUIZZI D A, OSTROWSKI A D, FORD P C. Photo-controlled release of NO and CO with inorganic and organometallic complexes//LO K K W. Luminescent and photoactive transition metal complexes as biomolecular probes and cellular reagents. Structure and bonding: Vol. 165[M/OL]. Berlin, Heidelberg: Springer, 2015: 1-45 [2025-10-15]. https://doi.org/10.1007/430_2014_164

    25. [25]

      KHALED R M, FRIEDRICH A, RAGHEB M A, ABDEL-GHANI N T, MANSOUR A M. Cytotoxicity of photoactivatable bromo tricarbonyl manganese(Ⅰ) compounds against human liver carcinoma cells[J]. Dalton Trans., 2020, 49(27): 9294-9305

    26. [26]

      CATALANO A, SINICROPI M S, IACOPETTA D, CERAMELLA J, MARICONDA A, ROSANO C, SCALI E, SATURNINO C, LONGO P. A review on the advancements in the field of metal complexes with Schiff bases as antiproliferative agents[J]. Appl. Sci. ‒Basel, 2021, 11(13): 6027

    27. [27]

      WANG X M, ZHANG J D, JIN J, LI Z Q, MA M H, WANG H Y, JIANG X J, LIU X M. Visible light-induced CO-release from manganese carbonyl complexes based on Schiff base ligand[J]. Chinese J. Inorg. Chem., 2023, 39(4): 680-688

  • 加载中
    1. [1]

      Shengwen XULonglong YANGHouji CAODeshuang TUXing WEIChangsheng LUHong YAN . Research progress on light-induced functionalization of polyhedral carborane clusters. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2187-2200. doi: 10.11862/CJIC.20250192

    2. [2]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    3. [3]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    4. [4]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    5. [5]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    6. [6]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    7. [7]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    8. [8]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    9. [9]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    10. [10]

      Xiao-Qi Xu Yapei Wang . Practice of Cultivating Multi-Disciplinary Talents with Comprehensive Skills through Demand-Driven, Individualized Education, and Humanities and Science Integration. University Chemistry, 2024, 39(6): 90-97. doi: 10.3866/PKU.DXHX202311049

    11. [11]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    12. [12]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    13. [13]

      Junjian WangQingquan YuShunyao LiuYuke ChenXiaoyu LiuGuodong LiXiaoyan LiuHong LiuWeijia Zhou . Laser-Induced Carbonization of Hydroxyapatite Sandwich Paper for Inkless Printing. Acta Physico-Chimica Sinica, 2024, 40(4): 2304024-0. doi: 10.3866/PKU.WHXB202304024

    14. [14]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    15. [15]

      Linlin Wu Yonghua Zhou Zhongbei Li Liu Deng Younian Liu Limiao Chen Jianhan Huang . Digital Education Promoting Applied Chemistry Comprehensive Experiments: A Case Study of Catalytic Oxidation of Hydrogen Chloride and Reaction Kinetics. University Chemistry, 2025, 40(9): 273-278. doi: 10.12461/PKU.DXHX202411018

    16. [16]

      Xinyu XuJiale LuBo SuJiayi ChenXiong ChenSibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153

    17. [17]

      Jie WEIQing ZHOUDandan DINGXiang JINGFei LI . Photothermal toxicity of Prussian blue nanoparticles to cervical cancer cells. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2345-2357. doi: 10.11862/CJIC.20240435

    18. [18]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    19. [19]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    20. [20]

      Jiahao Zeng Hui Chao . 诱导程序性细胞死亡的金属抗肿瘤药物研究. University Chemistry, 2025, 40(6): 145-159. doi: 10.12461/PKU.DXHX202406019

Metrics
  • PDF Downloads(1)
  • Abstract views(81)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return