Citation: Ruolin CHENG, Yue WANG, Fei YANG, Huagen LIANG, Shijian LU. Application of metal-organic frameworks (MOFs) in photocatalytic CO2 cycloaddition reaction: A mini review[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(12): 2429-2440. doi: 10.11862/CJIC.20250242 shu

Application of metal-organic frameworks (MOFs) in photocatalytic CO2 cycloaddition reaction: A mini review

Figures(4)

  • Photocatalytic CO2 cycloaddition reaction presents a promising CO2 conversion strategy to establish carbon neutrality. Among emerging catalysts, metal-organic frameworks (MOFs) have been regarded as paradigm-shifting photocatalysts for their atomic precision in active site engineering, controllable porosity, and exceptional photochemical stability under ambient conditions. However, inherent limitations persist in conventional MOFs, including restricted solar spectrum utilization, inefficient charge carrier separation, and inadequate epoxide activation ability. Recent breakthroughs address these challenges through multiple strategies: ligand engineering, dopant incorporation, and composite construction. This review systematically maps the evolutionary trajectory of MOF-based photocatalysts, providing mechanistic insights into structure-activity relationships and providing insights and directions for the design of high-performance MOF-based photocatalysts.
  • 加载中
    1. [1]

      KHAN M, AKMAL Z, TAYYAB M, MANSOOR S, LIU D N, YE Z W, ZHANG J L, WU S Q, WANG L Z. Integration of CO2 activation and photogenerated electron accumulation at Ti site via dual-tandem electric fields in BiOBr-MIL-125 heterojunction for boosting CO2 photoreduction[J]. Appl. Catal. B-Environ., 2025,370125165.

    2. [2]

      WANG D D, XU M Y, LIN Z X, WU J H, YANG W T, LI H J, SU Z M. One-pot synthesis of MIL-68(In)-derived CdIn2S4/In2S3 tubular heterojunction for highly selective CO2 photoreduction[J]. Rare Metals, 2025,44(6):3956-3969.

    3. [3]

      LIU H, CHANG X L, YAN T, PAN W G. Research progress in catalytic conversion of CO2 and epoxides based on ionic liquids to cyclic carbonates[J]. Nano Energy, 2025,135110596.

    4. [4]

      HUANG K, ZHANG J Y, LIU F, DAI S. Synthesis of porous polymeric catalysts for the conversion of carbon dioxide[J]. ACS Catal., 2018,8:9079-9102.

    5. [5]

      ZHAO C C, SU X F, LI R H, YAN L K, SU Z M. Insight into the mechanism of CO2 chemical fixation into epoxides by Windmill-shaped polyoxovanadate and n-Bu4NX (X=Br, I)[J]. Inorg. Chem., 2024,63(30):14032-14039.

    6. [6]

      CAI M L, DAI S Y, XUAN J, MO Y M. Bromide-mediated membraneless electrosynthesis of ethylene carbonate from CO2 and ethylene[J]. Nat. Commun., 2025,16(1)3285.

    7. [7]

      CHENG R L, WANG A H, SANG S X, LIANG H G, LIU S Q, TSIAKARAS P. Photocatalytic CO2 cycloaddition over highly efficient W18O49-based composites: An economic and ecofriendly choice[J]. Chem. Eng. J., 2023,466142982.

    8. [8]

      LI D D, KASSYMOVA M, CAI X C, ZANG S Q, JIANG H L. Photocatalytic CO2 reduction over metal-organic framework-based materials[J]. Coordin. Chem. Rev., 2020,412213262. doi: 10.1016/j.ccr.2020.213262

    9. [9]

      PRAJAPATI P K, KUMAR A, JAIN S L. First photocatalytic synthesis of cyclic carbonates from CO2 and epoxides using CoPc/TiO2 hybrid under mild conditions[J]. ACS Sustain. Chem. Eng, 2018,6:7799-7809. doi: 10.1021/acssuschemeng.8b00755

    10. [10]

      ZHANG H G, SI S H, ZHAI G Y, LI Y J, LIU Y Y, CHENG H F, WANG Z Y, WANG P, ZHENG Z K, DAI Y, LIU T X, HUANG B B. The long-distance charge transfer process in ferrocene-based MOFs with FeO6 clusters boosts photocatalytic CO2 chemical fixation[J]. Appl. Catal. B-Environ., 2023,337122909.

    11. [11]

      YANG Q H, PENG H T, ZHANG Q J, QIAN X, CHEN X, TANG X, DAI S, ZHAO J J, JIANG K, YANG Q, SUN J, ZHANG L J, ZHANG N, GAO H L, LU Z Y, CHEN L. Atomically dispersed high-density Al-N4 sites in porous carbon for efficient photodriven CO2 cycloaddition[J]. Adv. Mater., 2021,33(45)2103186.

    12. [12]

      CHENG R L, NIU X Y, LI H, LIANG H G, TSIAKARAS P. Oxygen vacancy-rich defective tungsten oxide (WO3-x) modified by Prussian blue for efficient photocatalytic carbon dioxide conversion and tetracycline degradation[J]. J. Colloid Interface Sci., 2025,683:807-816. doi: 10.1016/j.jcis.2024.12.146

    13. [13]

      LIN Y P, LI L, SHI Z, ZHANG L S, LI K, CHEN J M, WANG H, LEE J M. Catalysis with two-dimensional metal-organic frameworks: Synthesis, characterization, and modulation[J]. Small, 2024,20(24)2309841. doi: 10.1002/smll.202309841

    14. [14]

      ZHANG H, LI C, LANG F F, LI M, LIU H Y, ZHONG D C, QIN J S, DI Z Y, WANG D H, ZENG L, PANG J D, BU X H. Precisely tuning band gaps of hexabenzocoronene-based MOFs toward enhanced photocatalysis[J]. Angew. Chem.-Int. Edit., 2025,64(6)e202418017. doi: 10.1002/anie.202418017

    15. [15]

      SHEN Y, PAN T, WANG L, REN Z, ZHANG W N, HUO F W. Programmable logic in metal-organic frameworks for catalysis[J]. Adv. Mater., 2021,33(46)2007442. doi: 10.1002/adma.202007442

    16. [16]

      CUI W G, ZHANG G Y, HU T L, BU X H. Metal-organic framework-based heterogeneous catalysts for the conversion of C1 chemistry: CO, CO2 and CH4[J]. Coordin. Chem. Rev., 2019,387:79-120. doi: 10.1016/j.ccr.2019.02.001

    17. [17]

      LIANG J X, JIANG X, ZHANG X R, YU H, SHI J J, WANG M. Co-porphyrin-based metal-organic framework for light-driven efficient green conversion of CO2 and epoxides[J]. Chem. Eng. J., 2024,499156428. doi: 10.1016/j.cej.2024.156428

    18. [18]

      KEGERE J, ALNEYADI S S, PAZ A P, SIDDIG L A, ALBLOOSHI A, ALNAQBI M A, ALZAMLY A, GREISH Y E. Titanium metal-organic frameworks for photocatalytic CO2 conversion through a cycloaddition reaction[J]. Nanoscale Adv., 2024,6:4804-4813. doi: 10.1039/D4NA00535J

    19. [19]

      HUANG Z W, HU K Q, MEI L, KONG X H, YU J P, LIU K, ZENG L W, CHAI Z F, SHI W Q. A mixed-ligand strategy regulates thorium-based MOFs[J]. Dalton Trans., 2020,49(4):983-987. doi: 10.1039/C9DT04158C

    20. [20]

      WU Y L, GAO L, ZHOU X C, YU X, MENG Y R, ZUO J L, SU J, YUAN S. Designing photothermal catalytic systems in multi-component MOFs for enhanced conversion of carbon dioxide[J]. Chem. Commun., 2024,60(72):9825-9828. doi: 10.1039/D4CC03203A

    21. [21]

      SHARMA N, DHANKHAR S S, NAGARAJA C M. A Mn(Ⅱ)-porphyrin based metal-organic framework (MOF) for visible-light-assisted cycloaddition of carbon dioxide with epoxides[J]. Microporous Mesoporous Mat., 2019,280:372-378. doi: 10.1016/j.micromeso.2019.02.026

    22. [22]

      SHI Q, CHEN M H, XIONG J, LI T, FENG Y Q, ZHANG B. Porphyrin-based two-dimensional metal-organic framework nanosheets for efficient photocatalytic CO2 transformation[J]. Chem. Eng. J., 2024,481148301. doi: 10.1016/j.cej.2023.148301

    23. [23]

      ZHANG H G, ZHAI G Y, LEI L F, ZHANG C Y, LIU Y Y, WANG Z Y, CHENG H F, ZHENG Z K, WANG P, DAI Y, HUANG B B. Photo-induced photo-thermal synergy effect leading to efficient CO2 cycloaddition with epoxide over a Fe-based metal organic framework[J]. J. Colloid Interface Sci., 2022,625:33-41. doi: 10.1016/j.jcis.2022.05.146

    24. [24]

      ZHOU X L, ZHANG H G, CHENG H F, WANG Z Y, WANG P, ZHENG Z K, DAI Y, XING D N, LIU Y Y, HUANG B B. Enhanced cycloaddition between CO2 and epoxide over a bismuth-based metal organic framework due to a synergistic photocatalytic and photothermal effect[J]. J. Colloid Interface Sci., 2024,658:805-814. doi: 10.1016/j.jcis.2023.12.112

    25. [25]

      LI L, LIU W X, SHI T, SHANG S, ZHANG X D, WANG H, TIAN Z Q, CHEN L, XIE Y. Photoexcited single-electron transfer for efficient green synthesis of cyclic carbonate from CO2[J]. ACS Mater. Lett., 2023,5(4):1219-1226. doi: 10.1021/acsmaterialslett.3c00069

    26. [26]

      SIDDIG L A, ALZARD R H, NGUYEN H, GÖB C R, ALNAQBI M A, ALZAMLY A. Hexagonal layer manganese metal-organic framework for photocatalytic CO2 cycloaddition reaction[J]. ACS Omega, 2022,7(11):9958-9963. doi: 10.1021/acsomega.2c00663

    27. [27]

      SIDDIG L A, ALZARD R H, ABDELHAMID A S, RAMACHANDRAN T, NGUYEN H, PAZ A P, ALZAMLY A. Cobalt hydrogen-bonded organic framework as a visible light-driven photocatalyst for CO2 cycloaddition reaction[J]. Inorg. Chem., 2023,62(38):15550-15564. doi: 10.1021/acs.inorgchem.3c02051

    28. [28]

      LIU L F, ZHANG J L, CHENG X Y, XU M Z, KANG X C, WAN Q, HAN B X, WU N N, ZHENG L R, MA C Y. Amorphous NH2-MIL-68 as an efficient electro- and photo-catalyst for CO2 conversion reactions[J]. Nano Res., 2023,16(1):181-188. doi: 10.1007/s12274-022-4664-0

    29. [29]

      WU Z, GE Q M, CONG H, JIANG N, ZHAO W F, YANG S. Ligand-regulated oxygen vacancies in Ti-MOFs for visible-light-driven CO2 cycloaddition to cyclic carbonates[J]. Sep. Purif. Technol., 2025,366132831. doi: 10.1016/j.seppur.2025.132831

    30. [30]

      CHENG R L, WANG H R, REN J, MA Y Y, LIANG H G. Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst[J]. Chinese J. Inorg. Chem., 2024,40(3):523-532.

    31. [31]

      AHMED S H, BAKIRO M, ALZAMLY A. Photocatalytic activities of FeNbO4/NH2-MIL-125(Ti) composites toward the cycloaddition of CO2 to propylene oxide[J]. Molecules, 2021,26(6)1693. doi: 10.3390/molecules26061693

    32. [32]

      SHEN Q Y, CHEN W R, WANG M, JIN X X, ZHANG L X, SHI J L. A MOF@MOF S-scheme heterojunction with Lewis acid-base sites synergistically boosts cocatalyst-free CO2 cycloaddition[J]. ChemSusChem, 2025,18(2).

    33. [33]

      JIANG L J, WU D Q, HUANG Z S, CHEN F F, CHEN K, IBRAGIMOV A B, GAO J K. In situ pyrolysis of ZIF-67 to construct Co2N0.67@ZIF-67 for photocatalytic CO2 cycloaddition reaction[J]. Inorg. Chem., 2024,63(31):14761-14769. doi: 10.1021/acs.inorgchem.4c02504

    34. [34]

      WANG Y, DING M L, RONG W, KONG S Y, YAO J F. In situ growth of Fe-doped zeolitic imidazolate framework on MXene for boosting photodriven CO2 cycloaddition[J]. Sep. Purif. Technol., 2024,345127399. doi: 10.1016/j.seppur.2024.127399

    35. [35]

      DUAN C Y, XIE Y M, DING M L, FENG Y, YAO J F. Design of carbonized melamine sponge@MOFs composites bearing diverse acid-base properties for boosting thermal and solar-driven CO2 cycloaddition[J]. J. CO2 Util., 2022,64102158. doi: 10.1016/j.jcou.2022.102158

    36. [36]

      GONG L, SUN J, LIU Y S, YANG G C. Photoinduced synergistic catalysis on Zn single-atom-loaded hierarchical porous carbon for highly efficient CO2 cycloaddition conversion[J]. J. Mater. Chem. A, 2021,9(38):21689-21694. doi: 10.1039/D1TA06159C

    37. [37]

      WANG Y, DING M L, FU X T, YAO J F. High-efficiency photodriven coupling of CO2 and various epoxides via a multi-shelled hollow ZIF/MXene derived composite with low activation energy[J]. Inorg. Chem. Front., 2025,12(3):1114-1124. doi: 10.1039/D4QI02269F

    38. [38]

      ZHU H Y, SHEN Q Y, YUAN Y Y, GAO H, ZHOU S, YANG F L, SUN L M, WANG X J, YI J J, HAN X G. Engineering the sulfide semiconductor/photoinactive-MOF heterostructure with a hollow cuboctahedral structure to enhance photocatalytic CO2-epoxide-cycloaddition efficiency[J]. Inorg. Chem., 2024,63(9):4078-4085. doi: 10.1021/acs.inorgchem.3c03683

    39. [39]

      YANG G P, WU D, LU X M, TANG Y, GAO F, WANG Y Y. Light-assisted CO2 cycloaddition over a nanochannel cadmium-organic framework loaded with silver nanoparticles[J]. ACS Appl. Nano Mater., 2023,6(7):6197-6207. doi: 10.1021/acsanm.3c00499

    40. [40]

      GUO Y C, FENG L, WU C C, WANG X M, ZHANG X. Confined pyrolysis transformation of ZIF-8 to hierarchically ordered porous Zn-N-C nanoreactor for efficient CO2 photoconversion under mild conditions[J]. J. Catal., 2020,390:213-223. doi: 10.1016/j.jcat.2020.07.037

    41. [41]

      FANG Z, DENG Z, WAN X Y, LI Z Y, MA X, HUSSAIN S, YE Z Z, PENG X S. Keggin-type polyoxometalates molecularly loaded in Zr-ferrocene metal organic framework nanosheets for solar-driven CO2 cycloaddition[J]. Appl. Catal. B-Environ., 2021,296120329. doi: 10.1016/j.apcatb.2021.120329

    42. [42]

      LI Y J, ZHAI G Y, LIU Y Y, WANG Z Y, WANG P, ZHENG Z K, CHENG H F, DAI Y, HUANG B B. Synergistic effect between boron containing metal-organic frameworks and light leading to enhanced CO2 cycloaddition with epoxides[J]. Chem. Eng. J., 2022,437(1)135363.

    43. [43]

      ZHAI G Y, LIU Y Y, LEI L F, WANG J J, WANG Z Y, ZHENG Z K, WANG P, CHENG H F, DAI Y, HUANG B B. Light-promoted CO2 conversion from epoxides to cyclic carbonates at ambient conditions over a bi-based metal-organic framework[J]. ACS Catal., 2021,11(4):1988-1994. doi: 10.1021/acscatal.0c05145

    44. [44]

      SHI Q, XU Y H, CHEN M H, ZHAO P, DENG W B, XIONG J, GUO K, FENG Y Q, ZHANG B. A versatile synthetic strategy towards rare earth based metal-organic frameworks[J]. Sci. China Chem., 2025,68(4):1362-1371. doi: 10.1007/s11426-024-2322-9

    45. [45]

      FAN S C, CHEN S Q, WANG J W, LI Y P, ZHANG P, WANG Y, YUAN W Y, ZHAI Q G. Precise introduction of single vanadium site into indium-organic framework for CO2 capture and photocatalytic fixation[J]. Inorg. Chem., 2022,61:14131-14139. doi: 10.1021/acs.inorgchem.2c02250

    46. [46]

      ZHAI G Y, LIU Y Y, MAO Y Y, ZHANG H G, LIN L T, LI Y J, WANG Z Y, CHENG H F, WANG P, ZHENG Z K, DAI Y, HUANG B B. Improved photocatalytic CO2 and epoxides cycloaddition via the synergistic effect of Lewis acidity and charge separation over Zn modified UiO-bpydc[J]. Appl. Catal. B-Environ., 2022,301120793. doi: 10.1016/j.apcatb.2021.120793

    47. [47]

      HUANG Z W, HU K Q, MEI L, WANG C Z, CHEN Y M, WU W S, CHAI Z F, SHI W Q. Potassium ions induced framework interpenetration for enhancing the stability of uranium-based porphyrin MOF with visible-light-driven photocatalytic activity[J]. Inorg. Chem., 2021,60(2):652-660.

    48. [48]

      FANG Z B, LIU T T, LIU J X, JIN S Y, WU X P, GONG X Q, WANG K C, YIN Q, LIU T F, CAO R, ZHOU H C. Boosting interfacial charge-transfer kinetics for efficient overall CO2 photoreduction via rational design of coordination spheres on metal-organic frameworks[J]. J. Am. Chem. Soc., 2020,142(28):12515-12523. doi: 10.1021/jacs.0c05530

    49. [49]

      DAS R, MANNA S S, PATHAK B, NAGARAJA C M. Strategic design of Mg-centered porphyrin metal-organic framework for efficient visible light-promoted fixation of CO2 under ambient conditions: Combined experimental and theoretical investigation[J]. ACS Appl. Mater. Interfaces, 2022,14(29):33285-33296. doi: 10.1021/acsami.2c07969

    50. [50]

      CUI W G, HU T L. Incorporation of active metal species in crystalline porous materials for highly efficient synergetic catalysis[J]. Small, 2021,172003971. doi: 10.1002/smll.202003971

    51. [51]

      LIU C, CHEN H L, CHEN Q, BI J H, YU J C, WU L. Active site modulation in UiO-66(Ce) MOFs by Al3+ doping for boosting photocatalysis[J]. J. Catal., 2024,437115670. doi: 10.1016/j.jcat.2024.115670

    52. [52]

      ZHANG Y Y, HUANG R T, FANG Y, WANG J C, YUAN Z J, CHEN X W, ZHU W J, CAI Y, SHI X Y. Modulation of Fe-MOF via second-transition metal ion doping (Ti, Mn, Zn, Cu) for efficient visible-light driven CO2 reduction to CH4[J]. Sep. Purif. Technol., 2024,336126164. doi: 10.1016/j.seppur.2023.126164

  • 加载中
    1. [1]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    2. [2]

      Wei GUOZhuoyi GUOXiaoxin LIWei ZHANGJuanzhi YANTingting GUO . Electrochemical sensor based on a Co(Ⅱ)-based metal-organic framework for the detection of Cd2+ and Pb2+. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1889-1902. doi: 10.11862/CJIC.20250097

    3. [3]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    4. [4]

      Lixing LUShaoxian LIUJian XUZiqi JINJiongjia CHENGJiyang ZHAOFubo WANGHaiying WANG . [FeFe]-hydrogenase-containing compound and its photocatalytic H2-production performance. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2584-2590. doi: 10.11862/CJIC.20250200

    5. [5]

      Jimin HOUMengyang LIChunhua GONGShaozhuang ZHANGCaihong ZHANHao XUJingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348

    6. [6]

      Jiaxuan YANGChenfa DENGJingyang LIUChenzexi XUHongxin CHENYahui ZHUYing LIShuhua WANGRongping ZHOUChao CHEN . Advances in selective hydrogenation of α, β-unsaturated aldehydes/ketones catalyzed by metal-organic frameworks and their derivatives: A review. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1973-2010. doi: 10.11862/CJIC.20250175

    7. [7]

      Xiaofan ZHANGYu DUANMeijie SHINan LURenhong LIXiaoqing YAN . Z-scheme Co3O4/BiOBr heterojunction for efficient photoreduction CO2 reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1878-1888. doi: 10.11862/CJIC.20250079

    8. [8]

      Ruolin CHENGYue WANGXiyao NIUHuagen LIANGLing LIUShijian LU . Efficient photothermal catalytic CO2 cycloaddition over W18O49/rGO composites. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1276-1284. doi: 10.11862/CJIC.20240424

    9. [9]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    10. [10]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    11. [11]

      Jin ZHANGYuting WANGBin YUYuxin ZHONGYufeng ZHANG . Corn straw-derived carbon/BiOBr composite: Synthesis and photocatalytic degradation performance for rhodamine B. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1397-1408. doi: 10.11862/CJIC.20250028

    12. [12]

      Qi HUANGYouyi WANGZhujian MAOZhonghui YEWeihan CHENJui-yeh RAUJian HUANG . Enhanced photocatalytic tetracycline degradation via 2D CdS/Ti3AlC2 MAX heterostructure. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2385-2398. doi: 10.11862/CJIC.20250159

    13. [13]

      Shilong LiMing ZhaoYefei XuZhanyi LiuMian LiQing HuangXiang Wu . Performance optimization of aqueous Zn/MnO2 batteries through the synergistic effect of PVP intercalation and GO coating. Chinese Chemical Letters, 2025, 36(3): 110701-. doi: 10.1016/j.cclet.2024.110701

    14. [14]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    15. [15]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    16. [16]

      Min ZHUYuxin WANGXiao LIYaxu XUJunwen ZHUZihao WANGYu ZHUXiaochen HUANGDan XUMonsur Showkot Hossain Abul . Construction of AgVO3/ZIF-8 composites for enhanced degradation of tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 994-1006. doi: 10.11862/CJIC.20240392

    17. [17]

      Ruowen Liang Chao Zhang Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211

    18. [18]

      Peiyang DuLing YuanTong BaoYamin XiJiaxin LiYin BiLuli YinJing WangChao Liu . Facet effect of metal-organic frameworks on supporting co-catalysts for photocatalytic hydrogen peroxide production. Chinese Chemical Letters, 2025, 36(11): 110472-. doi: 10.1016/j.cclet.2024.110472

    19. [19]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    20. [20]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

Metrics
  • PDF Downloads(0)
  • Abstract views(111)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return