Citation: Ao XIA, Botao YU, Jun CHEN, Guoqiang TAN. Preparation and electrochemical property of Ce-doped MnO2[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(12): 2514-2526. doi: 10.11862/CJIC.20250163 shu

Preparation and electrochemical property of Ce-doped MnO2

  • Corresponding author: Ao XIA, xiaao@sust.edu.cn
  • Received Date: 14 May 2025
    Revised Date: 20 October 2025

Figures(9)

  • MnO2 powders doped with different ratios of Ce ions are synthesized by hydrothermal method. X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption-desorption, cyclic voltammetry, constant-current charge/discharge, and electrochemical impedance spectroscopy tests were used to analyze the structural, morphological, and electrochemical properties. The results showed that after doping with Ce ions, the specific surface area of MnO2 increased, the number of oxygen vacancies rose, and the structure became more stable; therefore, the electrode demonstrated more excellent electrochemical performance. The specific capacitance of the optimal sample C6M (the molar ratio of the introduced Ce to the theoretical generation MnO2 was 6%) could reach 192.6 F·g-1 at 1 A·g-1. When the current density increased from 1 to 10 A·g-1, the retention rate of the specific capacitance was 86.4%. After 5 000 cycles at 10 A·g-1, the retention rate of specific capacitance was 83.3%.
  • 加载中
    1. [1]

      FENG W H, LIU C L, LIU Z, PANG H. In-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor[J]. Chin. Chem. Lett., 2024,35(12):327-331.

    2. [2]

      LI K X, LI P, SUN Z N, SHI J, HUANG M H, CHEN J W, LIU S, SHI Z C, WANG H L. All-cellulose-based quasi-solid-state supercapacitor with nitrogen and boron dual-doped carbon electrodes exhibiting high energy density and excellent cyclic stability[J]. Green Energy Environ., 2023,8(4):1091-1101. doi: 10.1016/j.gee.2022.01.002

    3. [3]

      MANISH K G, YOGESH K, SHUKLA V K. Hydrothermal synthesis of a layered ZnO@MnO2 nanocomposite for high-performance supercapacitor electrodes[J]. J. Electron. Mater., 2024,53(4):2050-2061. doi: 10.1007/s11664-024-10951-y

    4. [4]

      SAM D M, DARSHINI K S, VERGHEESE T M, MARY N L. Microwave-assisted synthesis of poly(aniline-co-indole)/N-doped carbon dots nanocomposite as electrode materials for supercapacitor applications[J]. J. Mater. Sci., 2024,60(2):1-22.

    5. [5]

      SHEN L, AHN Y, KIM Y, KIM S Y, CHOI S H, KIM T D, LEE D J. Star-shaped PEDOT: PSS conductive polymers with reduced graphene oxide for high performance supercapacitor[J]. Macromol. Res., 2024,32(8):767-776. doi: 10.1007/s13233-024-00267-5

    6. [6]

      LIN T, LIN J C, WEI X Y, LU L L, YIN X F. Hydrothermal synthesis of nano-sized MnO2 supported on attapulgite electrode materials for supercapacitors[J]. Int. J. Hydrog. Energy., 2023,48(29):10765-10777. doi: 10.1016/j.ijhydene.2022.12.151

    7. [7]

      YAN X X, DUAN Y B, HU J, WU J L. Supercapacitors performance of RuO2 materials prepared by pulsed electrodeposition method[J]. Electronic Components and Materials, 2023,42(6):640-645.

    8. [8]

      ZHOU H X, CAO X J, WEI M L, KONG Y C. Study on the capacitive performance of CNTs/MnO2 composite[J]. Zhejiang Chemical Industry, 2024,55(12):5-10.

    9. [9]

      ZHANG H Z, XIE H X, WANG D Q, XU Y, YANG M Z, AI Z Z. BCN-driven interfacial effect: A novel strategy to remarkably enhance the capacitance of Co3O4/NiO for supercapacitor[J]. J. Colloid Interface Sci., 2025,680:572-580. doi: 10.1016/j.jcis.2024.11.125

    10. [10]

      SHAHIDI S, KALAOGLU F, NAJI L, RAHMANIAN A, MONGKHOLRATTANASIT R. MnO2/Ni-Cu-plated polyester fabric as a free-standing electrode in supercapacitor applications[J]. ACS Omega, 2025,10(7):7091-7101. doi: 10.1021/acsomega.4c10183

    11. [11]

      PATOWARY B B, BRAHMA D, MONDAL A. Study of RuO2- and MnO2-based electrode materials and their performance review in conjunction with PANi for supercapacitor applications[J]. Ionics, 2024,31(1):67-115.

    12. [12]

      PREMKUMAR A, SRIDEVI B, MOHAN S K. An in-depth investigation of physico-electro chemical properties of NiCo2S4 nano composites for high-performance supercapacitor applications[J]. J. Appl. Electrochem., 2024,55(1):63-77.

    13. [13]

      FAN H G, ZHANG X, WANG Y C, LANG J W, GAO R J. Highly conductive KNiF3@carbon nanotubes composite materials with cross-linked structure for high performance supercapacitor[J]. J. Power Sources, 2020,474228603. doi: 10.1016/j.jpowsour.2020.228603

    14. [14]

      TOM E, VELLUVA A, JOSEPH A, THOMAS T, SHA M S, JITHIN P V, THOMAS D. Tailoring the electrochemical properties of ZnS electrodes via cobalt doping for improved supercapacitor application[J]. J. Electron. Mater., 2024,54(1):451-461.

    15. [15]

      YAO S Y, ZHAO R, WANG S Y, ZHOU Y X, LIU R C, HU L Y, ZHANG A Q. Ni-doping induced structure distortion of MnO2 for highly efficient Na+ storage[J]. Chem. Eng. J., 2022,429132521. doi: 10.1016/j.cej.2021.132521

    16. [16]

      POONGUZHALI R, SHANMUGAM N, GOBI R. Effect of Fe doping on the electrochemical capacitor behavior of MnO2 nanocrystals[J]. J. Power Sources, 2015,293:790-798. doi: 10.1016/j.jpowsour.2015.06.021

    17. [17]

      LIN M X, SHAO F Q, TANG Y, LIN H J, XU Y C, JIAO Y, CHEN J R. Layered Co doped MnO2 with abundant oxygen defects to boost aqueous zinc-ion storage[J]. J. Colloid Interface Sci., 2022,611:662-669. doi: 10.1016/j.jcis.2021.12.136

    18. [18]

      POONGUZHALI R, GOBI R, SHANMUGAM N, SKUMAR A S, VIRUTHAGIRI G, KANNADASAN N. Enhancement in electrochemical behavior of copper doped MnO2 electrode[J]. Mater. Lett., 2015,157:116-122. doi: 10.1016/j.matlet.2015.05.086

    19. [19]

      ASHOKKUMAR K, DHANAPANDIAN S, SUTHAKARAN S, KRISHNAKUMAR N. Synthesis and characterization of Zn doped manganese dioxide nanoparticles for supercapacitor application[J]. Mater. Today: Proc., 2022,62(2):425-428.

    20. [20]

      XIA A, CHEN J, LI J M, YU B T, TAN G Q. Sm-doping and carbon aerogel synergistically improve the electrochemical properties of δ-MnO2 as supercapacitor electrodes[J]. J. Energy Storage, 2025,113115658. doi: 10.1016/j.est.2025.115658

    21. [21]

      LIANG Y M, ZHU D H, CHAO S X, HU M H, LI D A, ZHOU W Q, XUJ K, DUAN X M, LIU P P. Oxygen-vacancy europium-doped MnO2 ultrathin nanosheets used as asymmetric supercapacitors[J]. J. Energy Storage, 2023,60106673. doi: 10.1016/j.est.2023.106673

    22. [22]

      LI J G, WANG N, LIU J D, XU W. Influence of rare earth elements (Y, La and Ce) on the mechanical properties and oxidation resistance of nickel-based superalloys: A critical review[J]. J. Mater. Sci. Technol., 2024,195(28):9-21.

    23. [23]

      AFIEFUDIN M, SETIAWAN R A, ROHMAN F, SUENDO V, PRAYOGI A. Impact of Ni on the structure and electrochemical behavior of δ-MnO2 cathodes in zinc ion batteries[J]. Curr. Appl. Phys., 2025,72:18-27. doi: 10.1016/j.cap.2025.01.014

    24. [24]

      XU Y L, WANG S S, REN B B, ZHAO J P, ZHANG L H, DONG X X. Manganese oxide doping carbon aerogels prepared with MnO2 coordinated by N, N-dimethylmethanamide for supercapacitors[J]. J. Colloid Interface Sci., 2019,537:486-495. doi: 10.1016/j.jcis.2018.11.023

    25. [25]

      YU B Z, LU L L, HE Y T, DAI X, WANG Y, WANG T, CHONG S K, LIU L T, LIU Y N, TAN Q. Hierarchical porous CS@Ce-MnO2 as cathode for energy-dense and long-cycling flexible aqueous zinc-ion batteries[J]. J. Colloid Interface Sci., 2024,654:56-65. doi: 10.1016/j.jcis.2023.10.009

    26. [26]

      SHEN H D, BU J, WANG W B, WU C, CAO Y L, ZHANG B L, ZHANG Q Y, ZHANG H P. Insight into Ce doping induced oxygen vacancies over Ce-doped MnO2 catalysts for imine synthesis[J]. Chin. J. Chem., 2020,38(11):1353-1359. doi: 10.1002/cjoc.202000155

    27. [27]

      PATEL R, MISHRA K A, SINGH J, MUKHOPADHYAY I. Effect of Ce doping in MnO2 nanosheet over Ni foam for supercapacitor application[J]. J. Solid State Electrochem., 2024,28(9):1-12.

    28. [28]

      SONG Y Y, LI J M, QIAO R, DAI X, JING W T, SONG J X, CHEN Y Z, GUO S W, SUN J J, TAN Q, LIU Y N. Binder-free flexible zinc-ion batteries: One-step potentiostatic electrodeposition strategy derived Ce doped-MnO2 cathode[J]. Chem. Eng. J., 2022,431(4)133387.

    29. [29]

      DU S S, HU J L, WANG J C, WANG S, HOU J C, LI J Y, SU Y D, CHANG L P, QIN H W, WANG Y Q, BAO W R. Morphology-steered synthesis of Ce-MnO2 catalysts for catalytic oxidation of ethane at low temperature[J]. Fuel, 2023,350128762. doi: 10.1016/j.fuel.2023.128762

    30. [30]

      GODLAVEETI S K, ALSHGARI R A, MUSHAB M, LI M Q, HE Y. ZnS/MnO2 nanocomposite electrodes: A dual approach for superior supercapacitor and safety open structure lithium-ion battery[J]. J. Mol. Struct., 2025,1336142114. doi: 10.1016/j.molstruc.2025.142114

    31. [31]

      LIU Q W, ZHANG C J M, LI R D, LI J, ZHENG B Y, SONG S X, CHEN L H, LI T X, MA Y. Oxygen vacancies enhancing hierarchical NiCo2S4@MnO2 electrode for flexible asymmetric supercapacitors[J]. J. Colloid Interface Sci., 2025,695137901. doi: 10.1016/j.jcis.2025.137901

    32. [32]

      LIN H X, LIANG C H, LI M, DAI C S, XIONG Y P. Effects of aluminum doping on cobalt-free lithium-iron-nickel-manganese-oxygen cathode materials for lithium-ion batteries[J]. Energy Technol., 2017,5(8):1472-1483. doi: 10.1002/ente.201600757

    33. [33]

      HUNPRATUB S, CHULLAPHAN T, CHUMPOLKULWONG S, CHANLEK N, PHOKHA S. Characterization and electrochemical properties of carbon/CeO2 composites prepared using a hydrothermal method[J]. Mater. Chem. Phys., 2023,303127820. doi: 10.1016/j.matchemphys.2023.127820

    34. [34]

      XIA A, LI J M, ZENG X X, CHEN J, TAN G Q. Influence of fluorine doping on the structure and electrochemical performance of δ-MnO2 for supercapacitors[J]. Ceram. Int., 2024,50(8):13061-13069. doi: 10.1016/j.ceramint.2024.01.216

    35. [35]

      WANG K J, ZHAO C, WEI N H, YUN J G, HU X M, JIANG X Y, CHU R C, TONG Z F, ZOU Y, CHEN Z H. Insight into low‑ temperature styrene oxidation over nano CeO2 catalysts: modulating Ce—O bond strength to construct oxygen defect engineering[J]. ACS ES & T Eng., 2023,3(8):1098-1111.

    36. [36]

      GU H Q, CHEN M J, WANG Z B, ZHANG W M, LI Z Y. Enhancing H+ intercalation kinetics and stability in Cu2+ pre-intercalated δ-MnO2 for aqueous aluminum batteries[J]. J. Energy Chem., 2025,102:126-133. doi: 10.1016/j.jechem.2024.10.031

    37. [37]

      JI X Q, SUN D L, ZOU W H, WANG Z H, SUN D B. Ni/MnO2 doping pulping lignin-based porous carbon as supercapacitors electrode materials[J]. J. Alloy. Compd., 2021,876160112. doi: 10.1016/j.jallcom.2021.160112

    38. [38]

      LI L, LI R M, GAI S L, DING S J, HE F, ZHANG M L, YANG P P. MnO2 nanosheets grown on nitrogen-doped hollow carbon shells as a high‑performance electrode for asymmetric supercapacitors[J]. Chem. ‒Eur. J., 2015,21(19):7119-7126. doi: 10.1002/chem.201500153

    39. [39]

      WANG Y S, ZHAN Y L, YAN X Y, MA Z L. Investigations Ce doped MnO2/rGO as high performance supercapacitors material[J]. Russ. J. Electrochem., 2018,54(3):283-291. doi: 10.1134/S1023193517110180

    40. [40]

      JI X Q, SUN D L, ZOU W H, WANG Z H, SUN D B. Ni/MnO2 doping pulping lignin-based porous carbon as supercapacitors electrode materials[J]. J. Alloy. Compd., 2021,876160112. doi: 10.1016/j.jallcom.2021.160112

    41. [41]

      DAR R A, GIRI L, KARNA S P. Performance of palladium nanoparticle-graphene composite as an efficient electrode material for electrochemical double layer capacitors[J]. Electrochim. Acta, 2016,196:547-557. doi: 10.1016/j.electacta.2016.02.197

    42. [42]

      LI L, JIA S F, YUE S, YANG Y Y, TAN C, WANG C H, QIU H W, JI Y Q, CAO M H, TAI Z G, ZHANG D. Vanadium doping inhibit the Jahn-Teller effect of Mn3+ for high-performance aqueous zinc ion battery[J]. Chin. Chem. Lett., 2025,36(10)111009. doi: 10.1016/j.cclet.2025.111009

    43. [43]

      ZHOU H, ZOU X P, ZHANG Y R. Fabrication of TiO2@MnO2 nanotube arrays by pulsed electrodeposition and their application for high-performance supercapacitors[J]. Electrochim. Acta, 2016,192:259-267. doi: 10.1016/j.electacta.2016.01.182

    44. [44]

      TOUNSI A, SAYAH A, LAMIRI L, BOUMAZA N, HABELHAMES F, BAHLOUL A. One-step electrochemical synthesis of FTO/MnO2-graphene composite for electrochemical energy storage[J]. J. Energy Storage, 2023,73109228. doi: 10.1016/j.est.2023.109228

    45. [45]

      KUMAR A, SANGER A, KUMAR A, KUMAR Y, CHANDRA R. Sputtered synthesis of MnO2 nanorods as binder free electrode for high performance symmetric supercapacitors[J]. Electrochim. Acta, 2016,222(2):1761-1769.

  • 加载中
    1. [1]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    2. [2]

      Feng Lin Zhongxin Jin Caiying Li Cheng Shao Yang Xu Fangze Li Siqi Liu Ruining Gu . Preparation and Electrochemical Properties of Nickel Foam-Supported Ni(OH)2-NiMoO4 Electrode Material. University Chemistry, 2025, 40(10): 225-232. doi: 10.12461/PKU.DXHX202412017

    3. [3]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    4. [4]

      Zeqiu ChenLimiao CaiJie GuanZhanyang LiHao WangYaoguang GuoXingtao XuLikun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-0. doi: 10.1016/j.actphy.2025.100089

    5. [5]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

    6. [6]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    7. [7]

      Jianqiao ZHANGYang LIUYan HEYaling ZHOUFan YANGShihui CHENGBin XIAZhong WANGShijian CHEN . Ni-doped WP2 nanowire self-standingelectrode: Preparation and alkaline electrocatalytic hydrogen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1610-1616. doi: 10.11862/CJIC.20240444

    8. [8]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    9. [9]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    10. [10]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    11. [11]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    12. [12]

      Ximeng CHIJianwei WEIYunyun WANGWenxin DENGJiayi DAIXu ZHOU . First-principles study of the electronic structure and optical properties of Au and I doped-inorganic lead-free double perovskite Cs2NaBiCl6. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1371-1379. doi: 10.11862/CJIC.20240401

    13. [13]

      Qin HuLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024

    14. [14]

      Fan FanHao XiuYuting WangYongpeng CuiYajun Wang . Construction of NH2-MIL-125/Na-doped g-C3N4 composite S-scheme heterojunction and its performance in photocatalytic hydrogen peroxide production. Acta Physico-Chimica Sinica, 2026, 42(2): 100143-0. doi: 10.1016/j.actphy.2025.100143

    15. [15]

      Shilong LiMing ZhaoYefei XuZhanyi LiuMian LiQing HuangXiang Wu . Performance optimization of aqueous Zn/MnO2 batteries through the synergistic effect of PVP intercalation and GO coating. Chinese Chemical Letters, 2025, 36(3): 110701-. doi: 10.1016/j.cclet.2024.110701

    16. [16]

      Haoting WangMengfan LuoYuzhong WangJialong YinHeng ZhangJia ZhaoBo Lai . Mn(Ⅱ) enhanced permanganate oxidation of trace organic pollutants in water: Critical role of in situ formation of colloidal MnO2. Chinese Chemical Letters, 2025, 36(6): 110348-. doi: 10.1016/j.cclet.2024.110348

    17. [17]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    18. [18]

      Yijing GUHuan PANGRongmei ZHU . Applications of nickel-based metal-organic framework compounds in supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2029-2038. doi: 10.11862/CJIC.20250186

    19. [19]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    20. [20]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

Metrics
  • PDF Downloads(0)
  • Abstract views(155)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return