Citation: Leyu DING, Ying HE, Zhihe WEI, Yang PENG, Zhao DENG. Conductive polypyrrole-confined Co-MOF-74 for high-performance lithium metal anodes[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(12): 2491-2502. doi: 10.11862/CJIC.20250176 shu

Conductive polypyrrole-confined Co-MOF-74 for high-performance lithium metal anodes

Figures(7)

  • Conductive polypyrrole (PPy) with a lithiophilic site was confined to Co-MOF-74 pores by in situ polymerization strategy to prepare PPy@Co-MOF-74 (PPM), which was used for Cu electrode modification. This architecture achieves dual synergy. PPy effectively suppresses lithium dendrite growth via reduced lithium nucleation overpotential. Meanwhile, the 3D porous framework of Co-MOF-74 provides spatial buffering for lithium deposition to significantly alleviate volume expansion. Electrochemical test results demonstrated remarkable performance enhancements, with the modified PPM@Cu electrode achieving 250 stable cycles at 1 mA·cm-2 and 1 mAh·cm-2 in half-cell configuration. When it was paired with LiFePO4 (LFP) cathodes in full-cell tests, the system maintained 89% capacity retention after 350 cycles.
  • 加载中
    1. [1]

      ACEBEDO B, MORANT-MIÑANA M C, GONZALO E, DE LARRAMENDI I R, VILLAVERDE A, RIKARTE J, FALLARINO L. Current status and future perspective on lithium metal anode production methods[J]. Adv. Energy Mater., 2023, 13(13): 2203744  doi: 10.1002/aenm.202203744

    2. [2]

      LIU B, ZHANG J G, XU W. Advancing lithium metal batteries[J]. Joule, 2018, 2(5): 833-845  doi: 10.1016/j.joule.2018.03.008

    3. [3]

      LIU J, BAO Z N, CUI Y, DUFEK E J, GOODENOUGH J B, KHALIFAH P, LI Q Y, LIAW B Y, LIU P, MANTHIRAM A, MENG Y S, SUBRAMANIAN V R, TONEY M F, VISWANATHAN V V, WHITTINGHAM M S, XIAO J, XU W, YANG J H, YANG X Q, ZHANG J G. Pathways for practical high-energy long-cycling lithium metal batteries[J]. Nat. Energy, 2019, 4(3): 180-186  doi: 10.1038/s41560-019-0338-x

    4. [4]

      WANG Q Y, LIU B, SHEN Y H, WU J K, ZHAO Z Q, ZHONG C, HU W B. Confronting the challenges in lithium anodes for lithium metal batteries[J]. Adv. Sci., 2021, 8(17): 2101111  doi: 10.1002/advs.202101111

    5. [5]

      FENG H Z, ZHAO Y, HUANG A, ZHONG J X, XU J G. Strategies for lithium metal anodes: Crafting protective layers through physical and chemical design[J]. J. Power Sources, 2025, 630: 236154  doi: 10.1016/j.jpowsour.2024.236154

    6. [6]

      WANG Y J, HOU H Y, TANTRATIAN K, GONCHAROVA L V, FU B L, JIN E Z, PIRAYESH P, ABDOLVAND H, PANG X, CHEN L, CAO C H, ZHAO Y. Insight into the interface design for Li metal anode: Organic-rich or inorganic-rich[J]. Adv. Funct. Mater., 2024, 34(46): 2406426  doi: 10.1002/adfm.202406426

    7. [7]

      CHENG X B, YANG S J, LIU Z C, GUO J X, JIANG F N, JIANG F, XIONG X S, TANG W B, YUAN H, HUANG J Q, WU Y P, ZHANG Q. Electrochemically and thermally stable inorganics-rich solid electrolyte interphase for robust lithium metal batteries[J]. Adv. Mater., 2024, 36(1): 2307370  doi: 10.1002/adma.202307370

    8. [8]

      YAO S H, GUO C, YANG Y X, LIU X L, WANG J X, GENG J Z, LI H Y, HONG C, LI H F, TAO R M, LIANG J Y, LIU J Y. Rigid additives enabling inorganic-rich interphase via steric effects and van der Waals force for stable lithium metal batteries[J]. Adv. Funct. Mater., 2024, 35(16): 2419656

    9. [9]

      YAN J X, LI J Q, FANG W Q, GAO Y H, QIN Z S, SUN M W, ZHANG Y, ZHANG N, LIU X H, CHEN G. Sustainable release of borate- and nitrate-electrolyte additives via metal-organic frameworks nanocapsules for stable lithium metal batteries[J]. Chem. Eng. J., 2024, 494: 153104  doi: 10.1016/j.cej.2024.153104

    10. [10]

      YU Y Z, LONG K C, HUANG S Z, YU S Y, YANG J X, NAREN T, CHEN Y J, WEI W F, JI X B, JU B W, KUANG G C, CHEN L B. Bilayer artificial solid electrolyte interphase with 75 GPa Young′s modulus enable high energy density lithium metal pouch cells[J]. Adv. Funct. Mater., 2025, 35(24): 2424386  doi: 10.1002/adfm.202424386

    11. [11]

      XIAO Y K, FU A, ZOU Y, HUANG L, WANG H Q, SU Y S, ZHENG J M. High safety lithium-ion battery enabled by a thermal-induced shutdown separator[J]. Chem. Eng. J., 2022, 438: 135550  doi: 10.1016/j.cej.2022.135550

    12. [12]

      JI Z F, HU T, ZHU Z W, WU D C, LV S S, YUAN S Y, ZOU T W, FU X W, YANG W, WANG Y. Manipulating the nanophase separation of a polymer-salt microfluid generates an advanced separator for component-integrated energy storage devices[J]. ACS Nano, 2023, 18(1): 1098-1109

    13. [13]

      LV S S, HE X W, JI Z F, YANG S F, FENG L X, FU X W, YANG W, WANG Y. A supertough and highly-conductive nano-dipole doped composite polymer electrolyte with hybrid Li-solvation microenvironment for lithium metal batteries[J]. Adv. Energy Mater., 2023, 13(44): 2302711  doi: 10.1002/aenm.202302711

    14. [14]

      DUAN S, QIAN L T, ZHENG Y, ZHU Y F, LIU X, DONG L, YAN W, ZHANG J J. Mechanisms of the accelerated Li conduction in MOF-based solid-state polymer electrolytes for all-solid-state lithium metal batteries[J]. Adv. Mater., 2024, 36(32): 2314120  doi: 10.1002/adma.202314120

    15. [15]

      YANG Y, SUN Z Y, WU Y W, LIANG Z W, LI F K, ZHU M, LIU J. Porous organic framework materials (MOF, COF, and HOF) as the multifunctional separator for rechargeable lithium metal batteries[J]. Small, 2024, 20(37): 2401457  doi: 10.1002/smll.202401457

    16. [16]

      WANG X, CHEN Z, JIANG K, CHEN M H, PASSERINI S. 3D host design strategies guiding "bottom-up" lithium deposition: A review[J]. Adv. Energy Mater., 2024, 14(19): 2304229  doi: 10.1002/aenm.202304229

    17. [17]

      SAND H J S. On the concentration at the electrodes in a solution, with special reference to the liberation of hydrogen by electrolysis of a mixture of copper sulphate and sulphuric acid[J]. Philos. Mag., 1901, 1(1/2/3/4/5/6): 45-79

    18. [18]

      WU Q P, ZHENG Y J, GUAN X, XU J, CAO F H, LI C L. Dynamical SEI reinforced by open-architecture MOF film with stereoscopic lithiophilic sites for high-performance lithium-metal batteries[J]. Adv. Funct. Mater., 2021, 31(28): 2101034  doi: 10.1002/adfm.202101034

    19. [19]

      LIU L Q, ZHU L F, WANG Y L, GUAN X W, ZHANG Z F, LI H, WANG F, ZHANG H, ZHANG Z, YANG Z Y, MA T Y. Starfish- inspired solid-state Li-ion conductive membrane with balanced rigidity and flexibility for ultrastable lithium metal batteries[J]. Angew. Chem.‒Int. Edit., 2024, 64(7): e202420001

    20. [20]

      HAO Z D, WU Y, ZHAO Q, TANG J D, ZHANG Q Q, KE X X, LIU J B, JIN Y H, WANG H. Functional separators regulating ion transport enabled by metal-organic frameworks for dendrite-free lithium metal anodes[J]. Adv. Funct. Mater., 2021, 31(33): 2102938  doi: 10.1002/adfm.202102938

    21. [21]

      PANG L, LU J H, YU Y Y, LI D F, CHEN Y, WANG S J, WANG Y, SUN B, WANG H X, WANG G X. Cationic metal-organic framework arrays to enable dendrite-free lithium metal anodes[J]. ACS Energy Lett., 2024, 9(8): 3746-3753  doi: 10.1021/acsenergylett.4c01345

    22. [22]

      LI Y Y, CHEN W, LEI T Y, XIE H J, HU A J, WANG F, HUANG J W, WANG X F, HU Y, YANG C T, XIONG J. Reconstruction suppressed solid-electrolyte interphase by functionalized metal-organic framework[J]. Energy Storage Mater., 2023, 59: 102765  doi: 10.1016/j.ensm.2023.04.004

    23. [23]

      HUANG M S, YAO Z G, YANG Q F, LI C L. Consecutive nucleation and confinement modulation towards Li plating in seeded capsules for durable Li-metal batteries[J]. Angew. Chem.‒Int. Edit., 2021, 60(25): 14040-14050  doi: 10.1002/anie.202102552

    24. [24]

      LI X J, SU Y H, QIN Y Z, HUANG F D, MEI S W, HE Y, PENG C Y, DING L Y, ZHANG Y Z, PENG Y, DENG Z. Spatially confined silver nanoparticles in mercapto metal-organic frameworks to compartmentalize Li deposition toward anode-free lithium metal batteries[J]. Adv. Mater., 2023, 35(39): 2303489  doi: 10.1002/adma.202303489

    25. [25]

      HE Y, DING L Y, CHENG J, MEI S W, XIE X L, ZHENG Z Y, PAN W Y, QIN Y Z, HUANG F D, PENG Y, DENG Z. A "trinity" design of Li-O2 battery engaging the slow-release capsule of redox mediators[J]. Adv. Mater., 2023, 35(49): e2308134  doi: 10.1002/adma.202308134

    26. [26]

      SCHEURLE P I, MÄHRINGER A, JAKOWETZ A C, HOSSEINI P, RICHTER A F, WITTSTOCK G, MEDINA D D, BEIN T. A highly crystalline anthracene-based MOF-74 series featuring electrical conductivity and luminescence[J]. Nanoscale, 2019, 11(43): 20949  doi: 10.1039/C9NR05431F

    27. [27]

      KIM S H, LEE Y J, KIM D H, LEE Y J. Bimetallic metal-organic frameworks as efficient cathode catalysts for Li-O2 batteries[J]. ACS Appl. Mater. Interfaces, 2018, 10(1): 660-667  doi: 10.1021/acsami.7b15499

    28. [28]

      STRAUSS I, MUNDSTOCK A, HINRICHS D, HIMSTEDT R, KNEBEL A, REINHARDT C, DORFS D, CARO J. The interaction of guest molecules with Co-MOF-74: A vis/NIR and Raman approach[J]. Angew. Chem.‒Int. Edit., 2018, 57(25): 7434-7439  doi: 10.1002/anie.201801966

    29. [29]

      ZOU X H, CHENG Z C, LU Q, LIAO K M, RAN R, ZHOU W, SHAO Z P. Stabilizing Li anodes in I2 steam to tackle the shuttling-induced depletion of an iodide/triiodide redox mediator in Li-O2 batteries with suppressed Li dendrite growth[J]. ACS Appl. Mater. Interfaces, 2021, 13(45): 53859-53867  doi: 10.1021/acsami.1c15349

    30. [30]

      GONG Y N, JIAO L, QIAN Y Y, PAN C Y, ZHENG L R, CAI X C, LIU B, YU S H, JIANG H L. Regulating the coordination environment of MOF-templated single-atom nickel electrocatalysts for boosting CO2 reduction[J]. Angew. Chem.‒Int. Edit., 2020, 59(7): 2705-2709  doi: 10.1002/anie.201914977

    31. [31]

      MA Y, WEI L, HE Y, YUAN X Z, SU Y H, GU Y T, LI X J, ZHAO X H, QIN Y Z, MU Q Q, PENG Y, SUN Y, DENG Z. A "blockchain" synergy in conductive polymer-filled metal-organic frameworks for dendrite-free Li plating/stripping with high coulombic efficiency[J]. Angew. Chem.‒Int. Edit., 2022, 61(7): e202420001

    32. [32]

      CHE R Q, CHENG S, HUANG C, LIU M, CHEN Z A, HAN J, CHEN W, ZHANG P C. Poly(vinylidene fluoride)-based Janus separators with an ultrathin conductive layer for suppressing lithium dendrite growth[J]. Chem. Eng. J., 2025, 509: 161238  doi: 10.1016/j.cej.2025.161238

    33. [33]

      YAO W, HE S J, XU J G, WANG J S, HE M, ZHANG Q F, LI Y, XIAO X. Polypyrrole nanotube sponge host for stable lithium-metal batteries under lean electrolyte conditions[J]. ACS Sustain. Chem. Eng., 2021, 9(6): 2543-2551  doi: 10.1021/acssuschemeng.0c08338

    34. [34]

      LUO G, HU X L, LIU W, LU G J, ZHAO Q N, WEN J, LIANG J, HUANG G S, JIANG B, XU C H, PAN F S. Freestanding polypyrrole nanotube/reduced graphene oxide hybrid film as flexible scaffold for dendrite-free lithium metal anodes[J]. J. Energy Chem., 2021, 58: 285-291  doi: 10.1016/j.jechem.2020.09.017

    35. [35]

      ADAMS B D, ZHENG J M, REN X D, XU W, ZHANG J G. Accurate determination of Coulombic efficiency for lithium metal anodes and lithium metal batteries[J]. Adv. Energy Mater., 2018, 8(7): 1702097  doi: 10.1002/aenm.201702097

    36. [36]

      WU J Y, RAO Z X, LIU X T, SHEN Y, FANG C, YUAN L X, LI Z, ZHANG W X, XIE X L, HUANG Y H. Polycationic polymer layer for air-stable and dendrite-free Li metal anodes in carbonate electrolytes[J]. Adv. Mater., 2021, 33(12): 2007428  doi: 10.1002/adma.202007428

    37. [37]

      OLDENBURGER M, BEDÜRFTIG B, GRUHLE A, GRIMSMANN F, RICHTER E, FINDEISEN R, HINTENNACH A. Investigation of the low frequency Warburg impedance of Li-ion cells by frequency domain measurements[J]. J. Energy Storage, 2019, 21: 272-280  doi: 10.1016/j.est.2018.11.029

    38. [38]

      HU W X, PENG Y F, WEI Y M, YANG Y. Application of electrochemical impedance spectroscopy to degradation and aging research of lithium-ion batteries[J]. J. Phys. Chem. C, 2023, 127(9): 4465-4495  doi: 10.1021/acs.jpcc.3c00033

    39. [39]

      EVANS J, VINCENT C A, BRUCE P G. Electrochemical measurement of transference numbers in polymer electrolytes[J]. Polymer, 1987, 28(13): 2324-2328  doi: 10.1016/0032-3861(87)90394-6

  • 加载中
    1. [1]

      Zeyu LiuWenze HuangYang XiaoJundong ZhangWeijin KongPeng WuChenzi ZhaoAibing ChenQiang Zhang . Nanocomposite Current Collectors for Anode-Free All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2305040-0. doi: 10.3866/PKU.WHXB202305040

    2. [2]

      Xueyu LinRuiqi WangWujie DongFuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 100021-0. doi: 10.3866/PKU.WHXB202311005

    3. [3]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    4. [4]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

    5. [5]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    6. [6]

      Zhiyuan TONGZiyuan LIKe ZHANG . Three-dimensional porous collector based on Cu-Li6.4La3Zr1.4Ta0.6O12 composite layer for the construction of stable lithium metal anode. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 499-508. doi: 10.11862/CJIC.20240238

    7. [7]

      Ziliang KANGJiamin ZHANGHong ANXiaohua LIUYang CHENJinping LILibo LI . Preparation and water adsorption properties of CaCl2@MOF-808 in-situ composite moulded particles. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2133-2140. doi: 10.11862/CJIC.20240282

    8. [8]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    9. [9]

      Jing ZhangSu ZhangQiqi LiLinken JiYutong LiYukang RenXiaobei ZangNing CaoHan HuPeng LiangZhuangjun Fan . Integrating high surface area and electric conductivity in activated carbon by in situ formation of the less-defective carbon network during selective chemical etching. Acta Physico-Chimica Sinica, 2025, 41(10): 100114-0. doi: 10.1016/j.actphy.2025.100114

    10. [10]

      Bowen YangRui WangBenjian XinLili LiuZhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-0. doi: 10.3866/PKU.WHXB202310024

    11. [11]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    12. [12]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    13. [13]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    14. [14]

      Jianyu QinYuejiao AnYanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-0. doi: 10.3866/PKU.WHXB202408002

    15. [15]

      Lin′an CAODengyue MAGang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160

    16. [16]

      Rui LIUXinjun ZHOUTao WANG . Photocatalytic degradation performance of tetracycline by MOF-74-Mn/g-C3N4 Z-type heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1796-1804. doi: 10.11862/CJIC.20250033

    17. [17]

      Changsheng AnTao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101

    18. [18]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    19. [19]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    20. [20]

      Xiaoli Sun Xiang Wu Li Gan Wenming Wan . Barbier Polymerization: A New Teaching Case for Step-Growth Polymerization. University Chemistry, 2025, 40(4): 113-118. doi: 10.12461/PKU.DXHX202406102

Metrics
  • PDF Downloads(0)
  • Abstract views(181)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return