Citation: Rongzhan LOU, Qiaoling KANG, Zhenchao BAI, Dongyun LI, Yang XU, Rui WANG, Qingyi LU. Research progress of sodium ion high entropy layered oxide cathode[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(12): 2411-2428. doi: 10.11862/CJIC.20250142 shu

Research progress of sodium ion high entropy layered oxide cathode

  • Corresponding author: Qiaoling KANG, kangqiaoling@cjlu.edu.cn
  • Received Date: 25 April 2025
    Revised Date: 20 October 2025

Figures(11)

  • Layered oxides have received extensive attention in the field of sodium-ion battery (SIB) due to their high theoretical capacity and ease of synthesis. However, the complex phase transitions caused by interlayer slip in layered oxides result in poor cycling stability, which limits their further application. The high-entropy strategy, which provides stable local structures, robust framework structures, and multifunctionality, is regarded as an effective means to modify sodium-ion layered cathode materials. This paper, by combining the research of our group in recent years and important domestic and international literature, reviews the latest research achievements of sodium-ion high-entropy layered oxide cathode materials from two aspects: synthesis methods and structure design. It deeply discusses the effects of synthesis methods (solid-phase method, sol-gel method, hydrothermal method, and coprecipitation method) and structure design (P2, O3, P2/O3, P2/P3, and P3/O3 types) on the structure and sodium storage performance of sodium-ion high-entropy layered oxides. Finally, the development of sodium-ion high-entropy layered oxides in the SIB field is prospectively discussed.
  • 加载中
    1. [1]

      LIN X M, YANG X T, CHEN H N, DENG Y L, CHEN W H, DONG J C, WEI Y M, LI J F. In situ characterizations of advanced electrode materials for sodium-ion batteries toward high electrochemical performances[J]. J. Energy Chem., 2023,76:146-164.

    2. [2]

      JIN J T, LIU Y C, ZHAO X D, LIU H, DENG S Q, SHEN Q Y, HOU Y, QI H, XING X R, JIAO L F, CHEN J. Annealing in argon universally upgrades the Na-storage performance of Mn-based layered oxide cathodes by creating bulk oxygen vacancies[J]. Angew. Chem.-Int. Edit., 2023,62e202219230.

    3. [3]

      WU C, XU Y X, SONG J C, HOU Y, JIANG S Y, HE R, WEI A J, TAN Q Q. Research progress on P2-type layered oxide cathode materials for sodium-ion batteries[J]. Chem. Eng. J., 2024,500157264.

    4. [4]

      HE S N, ZHANG R, HAN X, ZHOU Y F, ZHENG C, LI C C, XUE X, CHEN Y J, WU Z J, GAN J T, SHE L N, QI F L, LIU Y X, ZHANG M C, DU W B, JIANG Y Z, GAO M X, PAN H G. Unraveling 3d transition metal (Ni, Co, Mn, Fe, Cr, V) ions migration in layered oxide cathodes: A pathway to superior Li-ion and Na-ion battery cathodes[J]. Adv. Mater., 20252413760.

    5. [5]

      TAN X, ZENG J, SUN L Y, PENG C X, LI Z, ZOU S H, SHI Q, WANG H, LIU J. Current issues and corresponding optimizing strategies of layered oxide cathodes for sodium-ion batteries[J]. Infomat, 2025,7e12636.

    6. [6]

      YANG H, WANG D, LIU Y L, LIU Y H, ZHONG B H, SONG Y, KONG Q Q, WU Z G, GUO X D. Improvement of cycle life for layered oxide cathodes in sodium-ion batteries[J]. Energy Environ. Sci., 2024,17:1756-1780. doi: 10.1039/D3EE02934D

    7. [7]

      SHI X Y, WAN Y, ZHOU Z M, KUANG W X, CHEN X M, CHEN J, ZHOU X Z, LIU J X, CHOU S L, LI L. Polyanion-type iron-based sulfate cathode materials: From fundamental research to industrialization[J]. Energy Storage Mater., 2025,75104049.

    8. [8]

      MATHIYALAGAN K, RAJA R, SHIN D, LEE Y C. Research progress in sodium-iron-phosphate-based cathode materials for cost-effective sodium-ion batteries: Crystal structure, preparation, challenges, strategies, and developments[J]. Prog. Mater Sci., 2025,151101425.

    9. [9]

      XU Y, YIN L W, YANG C S, LEI Y, ZHANG H Y. Nitrogen-doped carbon encapsulated NaVPO4F as a promising ultra-long stability cathode for sodium ion batteries[J]. J. Energy Storage, 2025,122116691.

    10. [10]

      HUANG Y F, MU W N, MENG J J, BI X L, LEI X F, LUO S H. Modification of Prussian blue analogues as high-performance cathodes for sodium-ion batteries[J]. Chem. Eng. J., 2024,499156410.

    11. [11]

      WU R X, REN B, WANG X D, LIN J, LI X X, ZHENG J L, YANG H Y, SHANG Y. Vacancy remediation in Prussian blue analogs for high-performance sodium and potassium ion batteries[J]. Adv. Funct. Mater., 2025,352418018.

    12. [12]

      ZHANG K, NIU Y, XING H Y, WANG P F, WU L B, YAO X H, XU Y L. Revealing the self-regulating phase transition mechanism of low-volume P2+"Z" in P2-type sodium manganese with high-entropy substitution for sodium-ion batteries[J]. Small, 2025,212407524.

    13. [13]

      GAO H Q, ZENG J J, SUN Z P, JIANG X F, WANG X B. Advances in layered transition metal oxide cathodes for sodium-ion batteries[J]. Mater. Today Energy, 2024,42101551.

    14. [14]

      LU X Y, LI S Q, LI Y, WU F, WU C, BAI Y. From lab to application: Challenges and opportunities in achieving fast charging with polyanionic cathodes for sodium-ion batteries[J]. Adv. Mater., 2024,362407359.

    15. [15]

      SONG T Y, WANG C C, KIDKHUNTHOD P, ZHOU X L, ZHU A Q, LAN Y Q, LIU K L, LIANG J L, ZHANG W J, YAO W J, TANG Y B, LEE C S. Chemical disorder engineering enables high-voltage stable oxide cathodes over -20-25 ℃ in sodium-ion batteries[J]. Energy Storage Mater., 2025,76104106.

    16. [16]

      YEH J W, CHEN S K, LIN S J, GAN J Y, CHIN T S, SHUN T T, TSAU C H, CHANG S Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Adv. Eng. Mater., 2004,6(5):299-303.

    17. [17]

      ZHAO C L, DING F X, LU Y X, CHEN L Q, HU Y S. High-entropy layered oxide cathodes for sodium-ion batteries[J]. Angew. Chem.-Int. Edit., 2020,59:264-269.

    18. [18]

      FENG L, FAHRENHOLTZ W G, HILMAS G E. Two-step synthesis process for high-entropy diboride powders[J]. J. Am. Ceram. Soc., 2020,103:724-730.

    19. [19]

      HARRINGTON T J, GILD J, SARKER P, TOHER C, ROST C M, DIPPO O F, MCELFRESH C, KAUFMANN K, MARIN E, BOROWSKI L, HOPKINS P E, LUO J, CURTAROLO S, BRENNER D W, VECCHIO K S. Phase stability and mechanical properties of novel high entropy transition metal carbides[J]. Acta Mater., 2019,166:271-280. doi: 10.1016/j.actamat.2018.12.054

    20. [20]

      KRETSCHMER A, HOLEC D, YALAMANCHILI K, RUDIGIER H, HANS M, SCHNEIDER J M, MAYRHOFER P H. Strain-stabilized Al-containing high-entropy sublattice nitrides[J]. Acta Mater., 2022,224117483.

    21. [21]

      LIN L, WANG K, SARKAR A, NJEL C, KARKERA G, WANG Q S, AZMI R, FICHTNER M, HAHN H, SCHWEIDLER S, BREITUNG B. High-entropy sulfides as electrode materials for Li-ion batteries[J]. Adv. Energy Mater., 2022,122103090.

    22. [22]

      MA Y J, MA Y, WANG Q S, SCHWEIDLER S, BOTROS M, FU T T, HAHN H, BREZESINSKI T, BREITUNG B. High-entropy energy materials: Challenges and new opportunities[J]. Energy Environ. Sci., 2021,14:2883-2905.

    23. [23]

      WANG Q D, ZHAO C L, YAO Z P, WANG J L, WU F T, KUMAR S G H, GANAPATHY S, EUSTACE S, BAI X D, LI B H, LU J, WAGEMAKER M. Entropy-driven liquid electrolytes for lithium batteries[J]. Adv. Mater., 2023,352210677. doi: 10.1002/adma.202210677

    24. [24]

      WANG L, WANG L L, WANG H C, DONG H H, SUN W W, LV L P, YANG C, XIAO Y, WU F X, WANG Y, CHOU S L, SUN B, WANG G X, CHEN S Q. Progress and perspective of high-entropy strategy applied in layered transition metal oxide cathode materials for high-energy and long cycle life sodium-ion batteries[J]. Adv. Funct. Mater., 2024,352417258.

    25. [25]

      GU Z Y, WANG X T, HENG Y L, ZHANG K Y, LIANG H J, YANG J L, ANG E H, WANG P F, YOU Y, DU F, WU X L. Prospects and perspectives on advanced materials for sodium-ion batteries[J]. Sci. Bull., 2023,68:2302-2306. doi: 10.1016/j.scib.2023.08.038

    26. [26]

      LIN Y C, LUO S H, ZHAO W, SUN Q, CONG J, LI P W, LI P Y, YAN S X. The mystic role of high-entropy designs in rechargeable metal-ion batteries: A review[J]. J. Energy Chem., 2024,98:441-471. doi: 10.1016/j.jechem.2024.06.049

    27. [27]

      WU F, WU S Y, YE X, REN Y R, WEI P. Research progress of high-entropy cathode materials for sodium-ion batteries[J]. Chin. Chem. Lett., 2025,36109851. doi: 10.1016/j.cclet.2024.109851

    28. [28]

      AAMLID S S, OUDAH M, ROTTLER J, HALLAS A M. Understanding the role of entropy in high entropy oxides[J]. J. Am. Chem. Soc., 2023,145:5991-6006. doi: 10.1021/jacs.2c11608

    29. [29]

      XU H Y, WANG R, KANG Q L, LI D Y, XU Y, GE H L, LU Q Y. Research progress on design of high entropy oxides and their applications in lithium-ion batteries[J]. Chinese J. Inorg. Chem., 2023,39(12):2241-2255. doi: 10.11862/CJIC.2023.206

    30. [30]

      DONG F F, WANG R, LU Y, XU H Y, ZONG Q, YAN L J, MENG X H, MA T L, LI D Y, LU Q Y, DAI L Z, KANG Q L. Kinetically accelerated lithium storage in (LiFeCoNiMnCr)2O3 enabled by hollow multishelled structure, oxygen vacancies and high entropy engineering[J]. Chem. Eng. J., 2024,496153829. doi: 10.1016/j.cej.2024.153829

    31. [31]

      GAO H, LI J Y, ZHANG F, LI C C, XIAO J, NIE X M, ZHANG G L, XIAO Y, ZHANG D Y, GUO X, WANG Y, KANG Y M, WANG G X, LIU H. Revealing the potential and challenges of high-entropy layered cathodes for sodium-based energy storage[J]. Adv. Energy Mater., 2024,142304529. doi: 10.1002/aenm.202304529

    32. [32]

      DONG F F, KANG Q L, WANG R, ZONG Q, YAN L J, MENG X H, MA T L, FAN M Q, JIN C B. Hollow multishelled high entropy oxide with inert aluminum stabilizer for boosted electrochemical lithium storage[J]. Adv. Funct. Mater., 2025,352503977. doi: 10.1002/adfm.202503977

    33. [33]

      DONG Y T, ZHOU Z H, MA Y, ZHANG H H, MENG F B, WU Y P, MA Y J. Layered-structured sodium-ion cathode materials: Advancements through high-entropy approaches[J]. ACS Energy Lett., 2024,9:5096-5119. doi: 10.1021/acsenergylett.4c02223

    34. [34]

      LU Y, KANG Q L, DONG F F, SU M F, WANG R, YAN L J, MENG X H, MA T L, FAN M Q, GAO F. Metalloid phosphorus induces tunable defect engineering in high entropy oxide toward advanced lithium-ion batteries[J]. Adv. Funct. Mater., 2025,352413782. doi: 10.1002/adfm.202413782

    35. [35]

      DU X Y, MENG Y, YUAN H Y, XIAO D. High-entropy substitution: A strategy for advanced sodium-ion cathodes with high structural stability and superior mechanical properties[J]. Energy Storage Mater., 2023,56:132-140. doi: 10.1016/j.ensm.2023.01.010

    36. [36]

      HONG F F, ZHOU X, LIU H, FENG G L, LIU X H, ZHANG H, FAN W F, ZHANG B, ZUO M H, XING W Y, ZHANG P, XIANG W. Medium-entropy configuration enabling reversible P2-OP4 phase transition in layered oxides for high-rate sodium-ion batteries[J]. Rare Met., 2025,44(5):2997-3007. doi: 10.1007/s12598-024-03196-5

    37. [37]

      HUANG Z F, WANG S J, GUO X, MARLTON F, FAN Y M, PANG W K, HUANG T, XIAO J, LI D F, LIU H, GU Q F, YANG C C, DONG C L, SUN B, WANG G X. High-entropy layered oxide cathode materials with moderated interlayer spacing and enhanced kinetics for sodium-ion batteries[J]. Adv. Mater., 2024,362410857. doi: 10.1002/adma.202410857

    38. [38]

      MU J X, CAI T X, DONG W J, ZHOU C, HAN Z, HUANG F Q. Biphasic high-entropy layered oxide as a stable and high-rate cathode for sodium-ion batteries[J]. Chem. Eng. J., 2023,471144403. doi: 10.1016/j.cej.2023.144403

    39. [39]

      ZHAN J J, HUANG J W, LI Z, YUAN J J, DOU S X, LIU H K, WU C. Air-stable high-entropy layered oxide cathode with enhanced cycling stability for sodium-ion batteries[J]. Nano Lett., 2024,24(32):9793-9800. doi: 10.1021/acs.nanolett.4c00968

    40. [40]

      WEN Y F, LIN C G, SHEN H, FANG K, LI F P, LUO C K, WANG X L, PENG H L, QIAO Y, ZHUANG S X, LU M. Rational design of high-entropy P2/O3 biphasic layered cathodes for enhanced sodium storage performance[J]. Chem. Eng. J., 2025,506160126.

    41. [41]

      CAI Q Y, LIU X Y, HU H N, WANG P F, JIA M, ZHANG X Y. High-entropy configuration strategy boosts excellent rate performance of layered oxide for sodium-ion batteries[J]. Asia Pac. J. Chem. Eng., 2024,19e3116. doi: 10.1002/apj.3116

    42. [42]

      ZHANG Y X, WANG R J, SONG W H, LEI M, ZHANG Y X, LEI Z Y, WEI Q L, ZHANG X Y, WANG X Y. Enhancing electrochemical performance of high-entropy Co/Ni-free P2/O3 hybrid-phase layered metal oxide cathode for sodium-ion batteries[J]. Chem. Eng. J., 2024,500157005.

    43. [43]

      LIU Y W, JIANG W, LING M, FAN X M, WANG L G, LIANG C D. Revealing lithium configuration in aged layered oxides for effective regeneration[J]. ACS Appl. Mater. Interfaces, 2023,15:9465-9474.

    44. [44]

      WANG Z Q, ZHANG S F, FU X G, HUANG R, HUANG L, ZHANG J Y, YANG W H, FU F, SUN S G. High-entropy Mn/Fe-based layered cathode with suppressed P2-P'2 transition and low-strain for fast and stable sodium ion storage[J]. ACS Appl. Mater. Interfaces, 2024,16:2378-2388.

    45. [45]

      WANG Z Q, FANG L, FU X G, ZHANG S F, KONG H B, CHEN H W, FU F. A Ni/Co-free high-entropy layered cathode with suppressed phase transition and near-zero strain for high-voltage sodium-ion batteries[J]. Chem. Eng. J., 2024,480148130.

    46. [46]

      WANG H Z, ZHAO L Y, ZHANG H, LIU Y S, YANG L, LI F, LIU W H, DONG X T, LI X K, LI Z H, QI X D, WU L Y, XU Y F, WANG Y Q, WANG K K, YANG H C, LI Q, YAN S S, ZHANG X G, LI F, LI H S. Revealing the multiple cathodic and anodic involved charge storage mechanism in an FeSe2 cathode for aluminium-ion batteries by in situ magnetometry[J]. Energy Environ. Sci., 2022,15:311-319.

    47. [47]

      CHEN D W, HE B, JIANG S, WANG X L, SONG J, CHEN H, XIAO D, ZHAO Q, MENG Y, WANG Y J. Enhancing the structural stability and strength of P2-type layered oxide sodium ion battery cathodes by Zn/F dual-site doping[J]. Chem. Eng. J., 2025,510161676.

    48. [48]

      LIU G L, XU W L, WU J H, LI Y, CHEN L P, LI S Y, REN Q H, WANG J. Unlocking high-rate O3 layered oxide cathode for Na-ion batteries via ion migration path modulation[J]. J. Energy Chem., 2023,83:53-61.

    49. [49]

      HOU P Y, GONG M S, DONG M H, LIN Z Z, HUANG J Z, ZHANG H Z, LI F. The emerging high-entropy cathode materials for advanced Na-ion batteries: Advances and perspectives[J]. Energy Storage Mater., 2024,72103750. doi: 10.1016/j.ensm.2024.103750

    50. [50]

      GUO Y J, JIN R X, FAN M, WANG W P, XIN S, WAN L J, GUO Y G. Sodium layered oxide cathodes: Properties, practicality and prospects[J]. Chem. Soc. Rev., 2024,53:7828-7874. doi: 10.1039/D4CS00415A

    51. [51]

      KUBOTA K, ASARI T, KOMABA S. Impact of Ti and Zn dual-substitution in P2 type Na2/3Ni1/3Mn2/3O2 on Ni-Mn and Na-vacancy ordering and electrochemical properties[J]. Adv. Mater., 2023,352300714. doi: 10.1002/adma.202300714

    52. [52]

      DAI D M, LAI X B, WANG X J, YAO Y T, JIA M M, WANG L, YAN P Y, QIAO Y R, ZHANG Z Z, LI B, LIU D H. Increasing (010) active plane of P2-type layered cathodes with hexagonal prism towards improved sodium-storage[J]. Chin. Chem. Lett., 2024,35109405. doi: 10.1016/j.cclet.2023.109405

    53. [53]

      ZHENG X B, LI P, ZHU H J, RUI K, ZHAO G Q, SHU J, XU X, SUN W P, DOU S X. New insights into understanding the exceptional electrochemical performance of P2-type manganese-based layered oxide cathode for sodium ion batteries[J]. Energy Storage Mater., 2018,15:257-265. doi: 10.1016/j.ensm.2018.05.001

    54. [54]

      MA S B, ZOU P C, XIN H L. Extending phase-variation voltage zones in P2-type sodium cathodes through high-entropy doping for enhanced cycling stability and rate capability[J]. Mater. Today Energy, 2023,38101446. doi: 10.1016/j.mtener.2023.101446

    55. [55]

      HUANG Z X, LI K, CAO J M, ZHANG K Y, LIU H H, GUO J Z, LIU Y, WANG T, DAI D M, ZHANG X Y, GENG H B, WU X L. New insights into anionic redox in P2-type oxide cathodes for sodium-ion batteries[J]. Nano Lett., 2024,24:13615-13623. doi: 10.1021/acs.nanolett.4c03358

    56. [56]

      LIU Z G, LIU R X, XU S, TIAN J M, LI J C, LI H Y, YU T, CHU S Y, M. D'ANGELO A, PANG W K, ZHANG L, GUO S H, ZHOU H S. Achieving a deeply desodiated stabilized cathode material by the high entropy strategy for sodium-ion batteries[J]. Angew. Chem.-Int. Edit., 2024,63e202405620. doi: 10.1002/anie.202405620

    57. [57]

      LIU J, HUANG W Y, LIU R B, LANG J, LI Y H, LIU T C, AMINE K, LI H S. Entropy tuning stabilizing P2-type layered cathodes for sodium-ion batteries[J]. Adv. Funct. Mater., 2024,342315437. doi: 10.1002/adfm.202315437

    58. [58]

      LIU S Q, LIU F Z, ZHAO S, ZHUO Z Q, XIAO D D, CUI Z Y, WANG Y L, WANG B Y, WU T H, LI Y M, LIANG L S, HUANG H B, YANG W L, YU H J. A high-entropy engineering on sustainable anionic redox Mn-based cathode with retardant stress for high-rate sodium-ion batteries[J]. Angew. Chem.-Int. Edit., 2025,64e202421089. doi: 10.1002/anie.202421089

    59. [59]

      DONG W D, WU L Y, LIU B W, LING Z X, QI X D, FAN Z J, HU C G, WANG Y, AURBACH D, ZHANG X G. Fast-charging high-entropy O3-type layered cathodes for sodium-ion batteries[J]. Chem. Eng. J., 2025,504158997. doi: 10.1016/j.cej.2024.158997

    60. [60]

      TIAN K H, DANG Y Z, XU Z, ZHENG R G, WANG Z Y, WANG D, LIU Y G, WANG Q C. A three-in-one strategy of high-entropy, single-crystal, and biphasic approaches to design O3-type layered cathodes for sodium-ion batteries[J]. Energy Storage Mater., 2024,73103841. doi: 10.1016/j.ensm.2024.103841

    61. [61]

      LI X Y, LI Y, CUI Q W, ZHONG M H, ZHAO X L, LIU J J. Redox and structural stability for sodium-ion batteries through bond structure engineering[J]. J. Mater. Chem. A, 2024,12:31145-31152. doi: 10.1039/D4TA05924G

    62. [62]

      LIU L, XIN Y H, WANG Y S, DING X Y, ZHOU Q B, WANG Z Y, HUANG W Q, GAO H C. High-entropy configuration of O3-type layered transition-metal oxide cathode with high-voltage stability for sodium-ion batteries[J]. J. Mater. Chem. A, 2024,12:23495-23505. doi: 10.1039/D4TA04371E

    63. [63]

      GUAC D Y, JUNG H W, KIM S O. Enhancing electrochemical performance of O3-type NaNi0.4Fe0.25Mn0.35O2 cathode materials in sodium-ion batteries via high-entropy strategy[J]. Chem. Eng. J., 2025,508161145. doi: 10.1016/j.cej.2025.161145

    64. [64]

      ZHAO S Y, NING F H, YU X, GUO B Y, TEÓFILO R F, HUANG J Y, SHI Q H, WU S, FENG W L, ZHAO Y F. Inhomogeneous coordination in high-entropy O3-type cathodes enables suppressed slab gliding and durable sodium storage[J]. Angew. Chem.-Int. Edit., 2025,64e202416290. doi: 10.1002/anie.202416290

    65. [65]

      WANG B, MA J, WANG K J, WANG D K, XU G J, WANG X G, HU Z W, PAO C W, CHEN J L, DU L, DU X F, CUI G L. High-entropy phase stabilization engineering enables high-performance layered cathode for sodium-ion batteries[J]. Adv. Energy Mater., 2024,142401090. doi: 10.1002/aenm.202401090

    66. [66]

      WANG X, KANG Q L, SUN J Z, YANG Z, BAI Z C, YAN L J, MENG X H, WAN C B, MA T L. High-entropy engineering enables O3-type layered oxide with high structural stability and reaction kinetic for sodium storage[J]. J. Colloid Interface Sci., 2025,691137438. doi: 10.1016/j.jcis.2025.137438

    67. [67]

      ZENG Z Y, ABULIKEMU A, ZHANG J K, PENG Z Q, ZHANG Y X, UCHIMOTO Y, HAN J, WANG Q C. High-entropy O3-type cathode enabling low-temperature performance for sodium-ion batteries[J]. Nano Energy, 2024,128109813.

    68. [68]

      GARCIA N G, GONCALVES J M, REAL C, FREITAS B, RUIZ-MONTOYA J G, ZANIN H. Medium- and high-entropy materials as positive electrodes for sodium-ion batteries: Quo Vadis?[J]. Energy Storage Mater., 2024,67103213.

    69. [69]

      ZHENG W, LIANG G M, LIU Q, LI J X, YUWONO J A, ZHANG S L, PETERSON V K, GUO Z P. The promise of high-entropy materials for high-performance rechargeable Li-ion and Na-ion batteries[J]. Joule, 2023,7:2732-2748.

    70. [70]

      GAO X D, ZHANG X Y, LIU X Y, TIAN Y F, CAI Q Y, JIA M, YAN X H. Recent advances for high-entropy based layered cathodes for sodium ion batteries[J]. Small Methods, 2023,72300152.

    71. [71]

      LI Z X, WU Y M, YIN J W, WANG P F, LIU Z L, WEN Y X, ZHANG J H, ZHU Y R, YI T F. Emerging modification strategies for layered Fe-based oxide cathodes toward high-performance sodium-ion batteries[J]. J. Energy Chem., 2025,107:122-147.

    72. [72]

      WANG Y S, WANG Y S, XING Y H, JIANG C Y, PANG Y F, LIU H F, WU F, GAO H C. Entropy modulation strategy of P2-type layered transition metal oxide cathodes for sodium-ion batteries with a high performance[J]. J. Mater. Chem. A, 2023,11:19955-19964. doi: 10.1039/D3TA04094A

    73. [73]

      YANG X Y, DU M F, FU J L, YANG Y, XIONG Z, LI W Y, LI L Z, LONG J P, LI R, CHEN J, HU A J. Entropy-phase synergy enables stable and high-rate layered oxide cathodes for sodium-ion batteries[J]. Chem. Eng. J., 2025,523168402. doi: 10.1016/j.cej.2025.168402

    74. [74]

      WANG Z M, CHEN H, ZHAO Q, SHI Y, WANG H Y, YE Y X, GUO Y, DU Z G, YANG S B. High entropy induced lattice expansion in layered oxide cathode towards fast sodium storage[J]. Energy Storage Mater., 2024,71103617. doi: 10.1016/j.ensm.2024.103617

    75. [75]

      DANG Y Z, XU Z, WU Y R, ZHENG R G, WANG Z Y, LIN X P, LIU Y G, LI Z Y, SUN K, CHEN D F, WANG D. Boron-doped high-entropy oxide toward high-rate and long-cycle layered cathodes for wide-temperature sodium-ion batteries[J]. J. Energy Chem., 2024,95:577-587. doi: 10.1016/j.jechem.2024.03.055

    76. [76]

      PANG Y F, WANG Y S, JIANG C Y, DING X Y, XIN Y H, ZHOU Q B, CHEN B R, LIU H F, SINGH P, WANG Q C, GAO H C. A high-entropy intergrowth layered-oxide cathode with enhanced stability for sodium-ion batteries[J]. ChemSusChem, 2024,17e202400768. doi: 10.1002/cssc.202400768

    77. [77]

      LI R R, QIN X, LI X L, ZHU J X, ZHENG L R, LI Z T, ZHOU W D. High-entropy and multiphase cathode materials for sodium-ion batteries[J]. Adv. Energy Mater., 2024,142400127. doi: 10.1002/aenm.202400127

    78. [78]

      HAO D B, ZHANG G Y, NING D, ZHOU D, CHAI Y, XU J, YIN X X, DU R J, SCHUCK G, WANG J, LI Y L. Design of high-entropy P2/O3 hybrid layered oxide cathode material for high-capacity and high-rate sodium-ion batteries[J]. Nano Energy, 2024,125109562. doi: 10.1016/j.nanoen.2024.109562

    79. [79]

      ZHOU P F, CHE Z N, LIU J, ZHOU J K, WU X Z, WENG J Y, ZHAO J P, CAO H, ZHOU J, CHENG F Y. High-entropy P2/O3 biphasic cathode materials for wide-temperature rechargeable sodium-ion batteries[J]. Energy Storage Mater., 2023,57:618-627. doi: 10.1016/j.ensm.2023.03.007

    80. [80]

      FENG J M, LIU Y, FANG D, LI J L. Reusing the steel slag to design a gradient-doped high-entropy oxide for high-performance sodium ion batteries[J]. Nano Energy, 2023,118109030. doi: 10.1016/j.nanoen.2023.109030

    81. [81]

      HANG G H, GAO Y H, FAN Y X, GAO Y H, WU J W, MA J W, ZHANG R Y, HUANG Y H. Boosting the structural reversibility of layered oxide cathode for realizing long-term cycle life through electronic structure regulation[J]. Small, 2024,202407615. doi: 10.1002/smll.202407615

    82. [82]

      YAN H T, CHAI D D, LI X, FU Y Z. Full exploitation of charge compensation of O3-type cathode toward high energy sodium-ion batteries by high entropy strategy[J]. Small, 2024,202404039. doi: 10.1002/smll.202404039

    83. [83]

      GHOSH A, HEGDE R, SENGUTTUVAN P. A high entropy O3-Na1.0Li0.1Ni0.3Fe0.1Mn0.25Ti0.25O2 cathode with reversible phase transitions and superior electrochemical performances for sodium-ion batteries[J]. J. Mater. Chem. A, 2024,12:14583-14594. doi: 10.1039/D4TA01137F

    84. [84]

      RAHMAN M M, MAO J, KAN W H, SUN C J, LI L X, ZHANG Y, AVDEEV M, DU X W, LIN F. An ordered P2/P3 composite layered oxide cathode with long cycle life in sodium-ion batteries[J]. ACS Mater. Lett., 2019,1:573-581. doi: 10.1021/acsmaterialslett.9b00347

    85. [85]

      ZHOU Y N, WANG P F, NIU Y B, LI Q H, YU X Q, YIN Y X, XU S L, GUO Y G. A P2/P3 composite layered cathode for high-performance Na-ion full batteries[J]. Nano Energy, 2019,55:143-150. doi: 10.1016/j.nanoen.2018.10.072

    86. [86]

      WANG X Z, ZUO Y T, QIN Y B, ZHU X, XU S W, GUO Y J, YAN T R, ZHANG L, GAO Z B, YU L Z, LIU M T, YIN Y X, CHENG Y H, WANG P F, GUO Y G. Fast Na+ kinetics and suppressed voltage hysteresis enabled by a high-entropy strategy for sodium oxide cathodes[J]. Adv. Mater., 2024,362312300. doi: 10.1002/adma.202312300

    87. [87]

      WANG H J, GAO X, ZHANG S, MEI Y, NI L S, GAO J Q, LIU H Q, HONG N Y, ZHANG B C, ZHU F J, DENG W T, ZOU G Q, HOU H S, CAO X Y, CHEN H Y, JI X B. High-entropy Na-deficient layered oxides for sodium-ion batteries[J]. ACS Nano, 2023,17:12530-12543. doi: 10.1021/acsnano.3c02290

    88. [88]

      JOSHI A, CHAKRABARTY S, AKELLA S H, SAHA A, MUKHERJEE A, SCHMERLING B, EJGENBERG M, SHARMA R, NOKED M. High-entropy Co-free O3-type layered oxyfluoride: A promising air-stable cathode for sodium-ion batteries[J]. Adv. Mater., 2023,352304440. doi: 10.1002/adma.202304440

    89. [89]

      LIU X Y, WAN Y Y, JIA M, ZHANG H, XIE W Y, HU H N, YAN X H, ZHANG X Y. Facilitating the high voltage stability of NFM via transition metal slabs high-entropy configuration strategy[J]. Energy Storage Mater., 2024,67103313. doi: 10.1016/j.ensm.2024.103313

    90. [90]

      WALCZAK K, PLEWA A, GHICA C, ZAJAC W, TRENCZEK-ZAJAC A, ZAJAC M, TOBO J, MOLENDA J. NaMn0.2Fe0.2Co0.2Ni0.2 Ti0.2O2 high-entropy layered oxide-experimental and theoretical evidence of high electrochemical performance in sodium batteries[J]. Energy Storage Mater., 2022,47:500-514. doi: 10.1016/j.ensm.2022.02.038

    91. [91]

      REN H L, GAO X W, YONG D R, LIU Z M, WANG X C, GAO G P, CHEN H, GU Q F, LUO W B. Multiphase riveting structure constructed by slight molybdenum for enhanced P3/O3 layer-structured oxide cathode material[J]. Chem. Eng. J., 2024,494152787. doi: 10.1016/j.cej.2024.152787

  • 加载中
    1. [1]

      Shan ZhaoXu LiuHaotian GuoZonglin LiuPengfei WangJie ShuTingfeng Yi . Synergistic design of high-entropy P2/O3 biphasic cathodes for high-performance sodium-ion batteries. Acta Physico-Chimica Sinica, 2026, 42(1): 100129-0. doi: 10.1016/j.actphy.2025.100129

    2. [2]

      Yu GuoZhiwei HuangYuqing HuJunzhe LiJie Xu . Recent Advances in Iron-based Heterostructure Anode Materials for Sodium Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(3): 100022-0. doi: 10.3866/PKU.WHXB202311015

    3. [3]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    4. [4]

      Wenhui LiYakun TangYusheng ZhouYue ZhangWenhai ZhangQingtao MaLang LiuSen DongYuliang Cao . Enhanced sodium storage performance of asphalt-derived hard carbon through intramolecular oxidation for high-performance sodium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(10): 100119-0. doi: 10.1016/j.actphy.2025.100119

    5. [5]

      Xiangyu CHENZhenzhen MIAOLigang XUGuangbao WUZhuang LIUWenzhen LÜRunfeng CHEN . Research progress on low-dimensional organic-inorganic hybrid metal halide optoelectronic materials. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2201-2217. doi: 10.11862/CJIC.20250056

    6. [6]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-0. doi: 10.3866/PKU.WHXB202406014

    7. [7]

      Jianbao MeiBei LiShu ZhangDongdong XiaoPu HuGeng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-0. doi: 10.3866/PKU.WHXB202407023

    8. [8]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    9. [9]

      Lin′an CAODengyue MAGang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160

    10. [10]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    11. [11]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

    12. [12]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    13. [13]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    14. [14]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

    15. [15]

      Débora Ferreira dos Santos MoraisJosé Luis TiradoCarlos Pérez-VicenteFabiana Villela da MottaPedro LavelaMauricio BomioSergio Lavela . Unlocking the performance of sodium-ion batteries by coating Na3V2(PO4)3 with Nb2O5. Acta Physico-Chimica Sinica, 2026, 42(2): 100180-0. doi: 10.1016/j.actphy.2025.100180

    16. [16]

      Ying LiangYuheng DengShilv YuJiahao ChengJiawei SongJun YaoYichen YangWanlei ZhangWenjing ZhouXin ZhangWenjian ShenGuijie LiangBin LiYong PengRun HuWangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098

    17. [17]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    18. [18]

      Yuying JIANGJia LUOZhan GAO . Development status and prospects of solid oxide cell high entropy electrode catalysts. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1719-1730. doi: 10.11862/CJIC.20250124

    19. [19]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    20. [20]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

Metrics
  • PDF Downloads(0)
  • Abstract views(202)
  • HTML views(39)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return