Citation: Anqun LAI, Qiaoyu WU, Qingqing LIANG, Qiyong LI, Guowen DONG, Yongjie DING, Jia′nan CHEN, Qing YAN, Zhonghua PAN, Wangchuan XIAO. Electrocatalytic water oxidation properties of Nd-Co polynuclear complexes[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(12): 2527-2535. doi: 10.11862/CJIC.20250151 shu

Electrocatalytic water oxidation properties of Nd-Co polynuclear complexes

Figures(9)

  • A heterometallic polynuclear complex, [NdCo6(py)6(aib)6(μ3-O)3(NO3)3]·H2O (NdCo6-py), was synthesized through a layered diffusion method utilizing 2-aminoisobutyric acid (Haib) and pyridine (py) as coordinating ligands. Single-crystal X-ray diffraction reveals its unique architecture featuring a trigonal prismatic [NdCo6] core, where the central Nd3⁺ ion is encapsulated between two parallel, nearly equilateral Co3 triangles. This cage-like structure stabilizes the Nd3⁺ center while exposing multiple metal sites at the periphery. Electrocatalytic studies demonstrate that NdCo6-py exhibits remarkable catalytic activity towards the oxygen evolution reaction (OER), achieving a high turnover frequency (TOF) of 279 s⁻1 and Faradaic efficiency of 92.6% at 1.60 V (vs NHE). This exceptional electrocatalytic performance is attributed to the readily accessible bimetallic synergistic active sites within the cluster framework. These sites facilitate the O—O bond formation step through a cooperative mechanism, effectively mitigating the formation of high-valent metal intermediates and consequently lowering the reaction overpotential. These findings provide compelling evidence for the efficacy of the polymetallic synergistic catalysis strategy in modulating the O—O bond formation pathway.
  • 加载中
    1. [1]

      WULF C, HAASE M, BAUMANN M, ZAPP P. Weighting factor elicitation for sustainability assessment of energy technologies[J]. Sustain. Energ. Fuels, 2023,7(3):832-847. doi: 10.1039/D2SE01170K

    2. [2]

      FU H, WU Y Q, GUO Y H, SAKURAI T, ZHANG Q Q, LIU Y Y, ZHENG Z K, CHENG H F, WANG Z Y, HUANG B B, WANG Q, DOMEN K, WANG P. A scalable solar-driven photocatalytic system for separated H2 and O2 production from water[J]. Nat. Commun., 2025,16(1)990. doi: 10.1038/s41467-025-56314-x

    3. [3]

      ODENWELLER A, UECKERDT F. An adjusted strategy is needed to ground green hydrogen expectations in reality[J]. Nat. Energy, 2025,10(1):19-20.

    4. [4]

      LIN M S, NIE Q B, CHEN J N, LIU Z Y, WU Q Y, LIU X F, LIU C, PAN Z H, XIAO W C, LUO G G. Synthesis, photophysics and photosensitizing hydrogen evolution of a near-infrared heavy-atom-free sensitizer[J]. New J. Chem., 2025,49(18):7647-7654. doi: 10.1039/D5NJ00537J

    5. [5]

      YOU B, SUN Y J. Innovative strategies for electrocatalytic water splitting[J]. Accounts Chem. Res., 2018,51(7):1571-1580. doi: 10.1021/acs.accounts.8b00002

    6. [6]

      BERARDI S, DROUET S, FRANCàS L, GIMBERT-SURIñACH C, GUTTENTAG M, RICHMOND C, STOLL T, LLOBET A. Molecular artificial photosynthesis[J]. Chem. Soc. Rev., 2014,43(22):7501-7519. doi: 10.1039/C3CS60405E

    7. [7]

      HU C L, ZHANG L, GONG J L. Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting[J]. Energy Environ. Sci., 2019,12(9):2620-2645. doi: 10.1039/C9EE01202H

    8. [8]

      YANG S J, HAN J X, ZHANG W. Proton-coupled electron transfer in electrocatalytic water splitting[J]. Chem. ‒Eur. J., 2023,29(69)e202302770. doi: 10.1002/chem.202302770

    9. [9]

      UMENA Y, KAWAKAMI K, SHEN J R, KAMIYA N. Crystal structure of oxygen-evolving photosystem Ⅱ at a resolution of 1.9 Å[J]. Nature, 2011,473(7345):55-60. doi: 10.1038/nature09913

    10. [10]

      KANADY J S, TSUI E Y, DAY M W, AGAPIE T. A synthetic model of the Mn3Ca subsite of the oxygen-evolving complex in photosystem Ⅱ[J]. Science, 2011,333(6043):733-736. doi: 10.1126/science.1206036

    11. [11]

      LIU X, CAI X, ZHU Y. Catalysis synergism by atomically precise bimetallic nanoclusters doped with heteroatoms[J]. Accounts Chem. Res., 2023,56(12):1528-1538. doi: 10.1021/acs.accounts.3c00118

    12. [12]

      NOLL N, KRAUSE A M, BEUERLE F, WÜRTHNER F. Enzyme-like water preorganization in a synthetic molecular cleft for homogeneous water oxidation catalysis[J]. Nat. Catal., 2022,5(10):867-877. doi: 10.1038/s41929-022-00843-x

    13. [13]

      DEN BOER D, HETTERSCHEID D G H. Design principles for homogeneous water oxidation catalysts based on first-row transition metals[J]. Curr. Opin. Electrochem., 2022,35101064. doi: 10.1016/j.coelec.2022.101064

    14. [14]

      HAN L, DONG S J, WANG E K. Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction[J]. Adv. Mater., 2016,28(42):9266-9291. doi: 10.1002/adma.201602270

    15. [15]

      PEI G X, ZHANG L L, SUN X Y. Recent advances of bimetallic nanoclusters with atomic precision for catalytic applications[J]. Coord. Chem. Rev., 2024,506215692. doi: 10.1016/j.ccr.2024.215692

    16. [16]

      LI S, LI N N, DONG X Y, ZANG S Q, MAK T C W. Chemical flexibility of atomically precise metal clusters[J]. Chem. Rev., 2024,124(11):7262-7378. doi: 10.1021/acs.chemrev.3c00896

    17. [17]

      BENCINI A, BENELLI C, CANESCHI A, CARLIN R L, DEI A, GATTESCHI D. Crystal and molecular structure of and magnetic coupling in two complexes containing gadolinium(Ⅲ) and copper(Ⅱ) ions[J]. J. Am. Chem. Soc., 1985,107(26):8128-8136. doi: 10.1021/ja00312a054

    18. [18]

      ZHENG B Z, FAN J Y, CHEN B, QIN X, WANG J, WANG F, DENG R R, LIU X G. Rare-earth doping in nanostructured inorganic materials[J]. Chem. Rev., 2022,122(6):5519-5603. doi: 10.1021/acs.chemrev.1c00644

    19. [19]

      QI M Q, DU M H, KONG X J, LONG L S, ZHENG L S. Electrospray ionization mass spectrometry insights into the assembly of lanthanide-containing clusters[J]. Accounts Chem. Res., 2025,58(12):1867-1877. doi: 10.1021/acs.accounts.5c00151

    20. [20]

      CHEN W P, LIAO P Q, JIN P B, ZHANG L, LING B K, WANG S C, CHAN Y T, CHEN X M, ZHENG Y Z. The gigantic {Ni36Gd102} hexagon: A sulfate-templated "star-of-david" for photocatalytic CO2 reduction and magnetic cooling[J]. J. Am. Chem. Soc., 2020,142(10):4663-4670. doi: 10.1021/jacs.9b11543

    21. [21]

      JIA T, CHENG P M, ZHANG M X, LIU W D, LI C Y, SU H F, LONG L S, ZHENG L S, KONG X J. Ln/Cu bimetallic nanoclusters with enhanced NIR-Ⅱ luminescence[J]. J. Am. Chem. Soc., 2024,146(42):28618-28623. doi: 10.1021/jacs.4c09447

    22. [22]

      DU M H, ZHENG X Y, KONG X J, LONG L S, ZHENG L S. Synthetic protocol for assembling giant heterometallic hydroxide clusters from building blocks: Rational design and efficient synthesis[J]. Matter, 2020,3(4):1334-1349. doi: 10.1016/j.matt.2020.06.020

    23. [23]

      PAN Z H, WENG Z Z, KONG X J, LONG L S, ZHENG L S. Lanthanide-containing clusters for catalytic water splitting and CO2 conversion[J]. Coord. Chem. Rev., 2022,457214419. doi: 10.1016/j.ccr.2022.214419

    24. [24]

      LAN T X, GAO W S, CHEN C N, WANG H S, WANG M, FAN Y H. Two tetranuclear 3d-4f heterometal complexes Mn2Ln2 (Ln=Dy, Gd): Synthesis, structure, magnetism, and electrocatalytic reactivity for water oxidation[J]. New J. Chem., 2018,42(8):5798-5805. doi: 10.1039/C8NJ00149A

    25. [25]

      EVANGELISTI F, GÜTTINGER R, MORÉ R, LUBER S, PATZKE G R. Closer to photosystem Ⅱ: A Co4O4 cubane catalyst with flexible ligand architecture[J]. J. Am. Chem. Soc., 2013,135(50):18734-18737. doi: 10.1021/ja4098302

    26. [26]

      CHEN R, CHEN C L, DU M H, WANG X, WANG C, LONG L S, KONG X J, ZHENG L S. Soluble lanthanide-transition-metal clusters Ln36Co12 as effective molecular electrocatalysts for water oxidation[J]. Chem. Commun., 2021,57(29):3611-3614. doi: 10.1039/D0CC08132A

    27. [27]

      CHEN J N, PAN Z H, QIU Q H, WANG C, LONG L S, ZHENG L S, KONG X J. Soluble Gd6Cu24 clusters: Effective molecular electrocatalysts for water oxidation[J]. Chem. Sci., 2024,15(2):511-515. doi: 10.1039/D3SC05849B

    28. [28]

      JIANG X, LI J, YANG B, WEI X Z, DONG B W, KAO Y, HUANG M Y, TUNG C H, WU L Z. A bio-inspired Cu4O4 cubane: Effective molecular catalysts for electrocatalytic water oxidation in aqueous solution[J]. Angew. Chem. ‒Int. Edit., 2018,57(26):7850-7854. doi: 10.1002/anie.201803944

    29. [29]

      GARRIDO-BARROS P, FUNES-ARDOIZ I, DROUET S, BENET-BUCHHOLZ J, MASERAS F, LLOBET A. Redox non-innocent ligand controls water oxidation overpotential in a new family of mononuclear Cu-based efficient catalysts[J]. J. Am. Chem. Soc., 2015,137(21):6758-6761. doi: 10.1021/jacs.5b03977

    30. [30]

      LU C, DU J L, SU X J, ZHANG M T, XU X X, MEYER T J, CHEN Z F. Cu(Ⅱ) aliphatic diamine complexes for both heterogeneous and homogeneous water oxidation catalysis in basic and neutral solutions[J]. ACS Catal., 2016,6(1):77-83. doi: 10.1021/acscatal.5b02173

    31. [31]

      CHEN J N, PAN Z H, SUN F L, WU P X, ZHENG S T, ZHUANG G L, LONG L S, ZHENG L S, KONG X J. Tuning electrocatalytic water oxidation activity: Insights from the active-site distance in LnCu6 clusters[J]. Small, 2024,20(32)2401044. doi: 10.1002/smll.202401044

    32. [32]

      XIAO W C, NIE Q B, LUO G G. Secondary hierarchical complexity in double-stranded cluster helicates covered by NNNNN type pincer ligands[J]. Dalton Trans., 2023,52(19):6239-6243. doi: 10.1039/D3DT00912B

    33. [33]

      CHEN J N, PAN Z H, SUN F L, LI J P, ZHUANG G L, LONG L S, ZHENG L S, KONG X J. Synergistic mechanisms of oxygen evolution reaction in atomically precise LaCo6 clusters with distinct geometries[J]. Sci. China Chem., 2025,68(5):1832-1836. doi: 10.1007/s11426-024-2570-y

    34. [34]

      CHEN F F, WANG N, LEI H T, GUO D Y, LIU H F, ZHANG Z Y, ZHANG W, LAI W Z, CAO R. Electrocatalytic water oxidation by a water-soluble copper(Ⅱ) complex with a copper-bound carbonate group acting as a potential proton shuttle[J]. Inorg. Chem., 2017,56(21):13368-13375. doi: 10.1021/acs.inorgchem.7b02125

    35. [35]

      CERONI P, CREDI A, VENTURI M. Electrochemical methods//SCHALLEY C A. Analytical methods in supramolecular chemistry: Vol. 2[M]. 2nd ed. Weinheim: Wiley-VCJ, 2012: 371-457

    36. [36]

      LAVIRON E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems[J]. J. Electroanal. Chem., 1979,101(1):19-28. doi: 10.1016/S0022-0728(79)80075-3

    37. [37]

      GHOSH T, MAAYAN G. Efficient homogeneous electrocatalytic water oxidation by a manganese cluster with an overpotential of only 74 mV[J]. Angew. Chem. ‒Int. Edit., 2019,58(9):2785-2790. doi: 10.1002/anie.201813895

    38. [38]

      CHEN Q F, XIAN K L, ZHANG H T, SU X J, LIAO R Z, ZHANG M T. Pivotal role of geometry regulation on O—O bond formation mechanism of bimetallic water oxidation catalysts[J]. Angew. Chem. ‒Int. Edit., 2024,63(9)e202317514. doi: 10.1002/anie.202317514

    39. [39]

      YAN Q, LIU Y, ZHAO Y, ZHOU X, YUAN W. Molten salt-mediated electrosynthesis of MoS2 nanosheet-supported Rh nanoclusters for highly efficient electrocatalytic hydrogen evolution[J]. Chem. Commun., 2025,61(18):3700-3703. doi: 10.1039/D4CC06224H

    40. [40]

      DU X, ZHANG J, ZHANG M, WEI H, LIN X, GUO W, ZHANG P, LUO Z H. Deciphering the synergistic role of chemisorbed phosphate on FeOOH for high-efficiency overall water splitting[J]. Green Chem., 2025,27:7380-7388. doi: 10.1039/D5GC01624J

    41. [41]

      ZHOU X Y, ZHANG J J, ZHANG M Y, DU X Q, BAO W W, HAN J, LIN X, ZHANG P F, LUO Z H. Active site reconstruction of a metal hydroxide/metal molybdate heterogeneous interface enhances electrochemical water oxidation[J]. Inorg. Chem. Front., 2025,12(19):5819-5829. doi: 10.1039/D5QI00418G

    42. [42]

      SCHULZE M, KUNZ V, FRISCHMANN P D, WÜRTHNER F. A supramolecular ruthenium macrocycle with high catalytic activity for water oxidation that mechanistically mimics photosystem Ⅱ[J]. Nat. Chem., 2016,8(6):576-583. doi: 10.1038/nchem.2503

    43. [43]

      CHEN Q F, CHENG Z Y, LIAO R Z, ZHANG M T. Bioinspired trinuclear copper catalyst for water oxidation with a turnover frequency up to 20 000 s-1[J]. J. Am. Chem. Soc., 2021,143(47):19761-19768. doi: 10.1021/jacs.1c08078

    44. [44]

      SU X J, GAO M, JIAO L, LIAO R Z, SIEGBAHN P E M, CHENG J P, ZHANG M T. Electrocatalytic water oxidation by a dinuclear copper complex in a neutral aqueous solution[J]. Angew. Chem. ‒Int. Edit., 2015,54(16):4909-4914. doi: 10.1002/anie.201411625

  • 加载中
    1. [1]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    2. [2]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    3. [3]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    4. [4]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    5. [5]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    6. [6]

      Dingwen CHENSiheng YANGHaiyan FUHua CHENXueli ZHENGWeichao XUEJiaqi XURuixiang LI . NiOOH-mediated synthesis of gold nanoaggregates for electrocatalytic performance for selective oxidation of glycerol to glycolate. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2317-2326. doi: 10.11862/CJIC.20250053

    7. [7]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

    8. [8]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    9. [9]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    10. [10]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    11. [11]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    12. [12]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    13. [13]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    14. [14]

      Xueting CaoShuangshuang ChaMing Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041

    15. [15]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    16. [16]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    17. [17]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    18. [18]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    19. [19]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 100024-0. doi: 10.3866/PKU.WHXB202404012

    20. [20]

      Jiaxin SuJiaqi ZhangShuming ChaiYankun WangSibo WangYuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-0. doi: 10.3866/PKU.WHXB202408012

Metrics
  • PDF Downloads(0)
  • Abstract views(116)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return