Citation: Lin LI, Jiaxue LI, Meixia YANG, Jiayu DING, Jiaqi JING, Ruiping ZHANG. Preparation of mitoxantrone self-assembled carrier-free nanodrugs regulated by sodium acetate for apoptosis induction of human breast carcinoma cells[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(12): 2536-2548. doi: 10.11862/CJIC.20250138 shu

Preparation of mitoxantrone self-assembled carrier-free nanodrugs regulated by sodium acetate for apoptosis induction of human breast carcinoma cells

Figures(11)

  • Based on the hydrogen bonding self-assembly strategy, a sodium acetate (NaAc) regulated high loading carrier-free nanodrug (MIT-DOX/NaAc, MIDA) was fabricated by employing a nano-coprecipitation method, which used mitoxantrone (MIT) and doxorubicin (DOX) as antitumor drug models. MIDA successfully formed with a maximum loading efficiency (95%), and the in vitro drug release showed that MIDA is pH-responsive. Excitingly, cytotoxicity and scratch migration assessments demonstrated that MIDA could target tumor cells through the enhanced permeability and retention effect (EPR), subsequently inhibiting the migration and proliferation of human breast carcinoma cells (MCF-7). The efficacy was higher than that of free DOX, MIT, and DOX/NaAc. Examination by fluorescence microscopy and flow cytometry showed that the uptake of MIDA by MCF-7 was time-dependent. In addition, MIDA could enter MCF-7 via both the clathrin and caveolae co-mediated endocytosis pathways, and then the dissociated MIT and DOX migrated into the nucleus to induce MCF-7 late apoptosis.
  • 加载中
    1. [1]

      SIEGEL R L, GIAQUINTO A N, JEMAL A. Cancer statistics, 2024[J]. CA-Cancer J. Clin., 2024,74(1):12-49. doi: 10.3322/caac.21820

    2. [2]

      WU H, LÜ Q. Epidemiological trends and implications of breast cancer prevention and control in China and the world: An interpretation of the Global Cancer Statistics Report 2018-2022[J]. Chinese J. Bases Clin. Gen. Surg., 2024,31(7):796-802.

    3. [3]

      HAN B F, ZHENG R S, ZENG H M, WANG S M, SUN K X, CHEN R, LI L, WEI W Q, HE J. Cancer incidence and mortality in China, 2022[J]. J. Natl. Cancer Cent., 2024,4(1):47-53.

    4. [4]

      LU Z H, CHEN Y, LIU D, JIAO X, LIU C, WANG Y K, ZHANG Z Z, JIA K, GONG J F, YANG Z M, SHEN L. The landscape of cancer research and cancer care in China[J]. Nat. Med., 2023,29:3022-3032. doi: 10.1038/s41591-023-02655-3

    5. [5]

      LI L, XU X R, LI Y Q, ZHANG C F. Preparation of targeting nanodiamond-metaminopterone drug system and its interaction with MCF-7 cells[J]. Chem. J. Chinese Universities, 2019,40(9):1998-2004.

    6. [6]

      YAO H Z, WANG Z G, WANG N, DENG Z Q, LIU G Y, ZHOU J H, CHEN S, SHI J H, ZHU G Y. Enhancing circulation and tumor accumulation of carboplatin via an erythrocyte-anchored prodrug strategy[J]. Angew. Chem. ‒Int. Edit., 2022,61(25)e202203838. doi: 10.1002/anie.202203838

    7. [7]

      WINTER J O. One step closer to cancer nanomedicine[J]. Science, 2022,377(6604):371-372. doi: 10.1126/science.add3666

    8. [8]

      BHATIA S N, CHEN X Y, DOBROVOLSKAIA M A, LAMMERS T. Cancer nanomedicine[J]. Nat. Rev. Cancer, 2022,22:550-556. doi: 10.1038/s41568-022-00496-9

    9. [9]

      CAI S S, LI T Y, AKINADE T, ZHU Y F, LEONG K W. Drug delivery carriers with therapeutic functions[J]. Adv. Drug Delivery Rev., 2021,176113884. doi: 10.1016/j.addr.2021.113884

    10. [10]

      MEI H, CAI S S, HUANG D, GAO H L, CAO J, HE B. Carrier-free nanodrugs with efficient drug delivery and release for cancer therapy: From intrinsic physicochemical properties to external modification[J]. Bioact. Mater., 2022,8:220-240.

    11. [11]

      LIU T, LI L X, WANG S, DONG F D, ZUO S Y, SONG J X, WANG X, LU Q, WANG H L, ZHANG H T, CHENG M S, LIU X H, HE Z G, SUN B J, SUN J. Hybrid chalcogen bonds in prodrug nanoassemblies provides dual redox-responsivity in the tumor microenvironment[J]. Nat Commun., 2022,137228. doi: 10.1038/s41467-022-35033-7

    12. [12]

      XIE X, JIANG K L, LI B W, HOU S L, TANG H L, SHAO B H, PING Y, ZHANG Q Q. A small-molecule self-assembled nanodrug for combination therapy of photothermal-differentiation-chemotherapy of breast cancer stem cells[J]. Biomaterials, 2022,286121598. doi: 10.1016/j.biomaterials.2022.121598

    13. [13]

      WANG H, LIN F, WU Y, GUO W, CHEN X S, XIAO C S, CHEN M W. Carrier-free nanodrug based on co-assembly of methylprednisolone dimer and rutin for combined treatment of spinal cord injury[J]. ACS Nano, 2023,17(13):12176-12187. doi: 10.1021/acsnano.3c00360

    14. [14]

      YU M Y, YU J J, ZHOU Y J, LIANG Z, TANG H, LI C B, QUE Q Y, WANG H X, XIE H Y, XU X. A self-assembled nanomicelle-based "one stone for two birds" strategy for precision therapy of hepatic ischemia-reperfusion injury[J]. Nano Res., 2025,18(2)94907185. doi: 10.26599/NR.2025.94907185

    15. [15]

      XU Y D, CHEN Z J, HAO W, YANG Z M, FARAG M, VONG C T, WANG Y T, WANG S P. Berberine and magnolol exert cooperative effects on ulcerative colitis in mice by self-assembling into carrier-free nanostructures[J]. J Nanobiotechnol., 2024,22538. doi: 10.1186/s12951-024-02804-x

    16. [16]

      TIAN J H, CHEN K, ZHANG Q, QIU C, TONG H B, HUANG J N, HAO M J, CHEN J H, ZHAO W T, WONG Y K, GAO L, LUO P, WANG J G, DU Q F. Mechanism of self-assembled celastrol-erianin nanomedicine for treatment of breast cancer[J]. Chem. Eng. J., 2024,499155709. doi: 10.1016/j.cej.2024.155709

    17. [17]

      FANG F, CHEN X. Carrier-free nanodrugs: From bench to bedside[J]. ACS Nano, 2024,18(35):23827-23841. doi: 10.1021/acsnano.4c09027

    18. [18]

      AN J L, ZHANG Z Q, ZHANG J R, ZHANG L Y, LIANG G F. Research progress in tumor therapy of carrier-free nanodrug[J]. Biomed. Pharmacother., 2024,178117258. doi: 10.1016/j.biopha.2024.117258

    19. [19]

      LI L, TIAN H L, ZHANG Z, DING N, HE K, LU S J, LIU R L, WU P J, WANG Y, HE B, LUO M C, PENG P L, YANG M, NICE E C, HUANG C H, XIE N, WANG D, GAO W. Carrier-free nanoplatform via evoking pyroptosis and immune response against breast cancer[J]. ACS Appl. Mater. Interfaces, 2023,15(1):452-468. doi: 10.1021/acsami.2c17579

    20. [20]

      YAO Y Q, XU Z N, DING H R, YANG S S, CHEN B H, ZHOU M J, ZHU Y H, YANG A H, YAN X X, LIANG C R, KOU X D, CHEN B, HUANG W, LI Y B. Carrier-free nanoparticles-new strategy of improving druggability of natural products[J]. J. Nanobiotechnol., 2025,23108. doi: 10.1186/s12951-025-03146-y

    21. [21]

      DONG X R, LIU H, LIU H B, ZHANG X Q, DENG X R. Carrier-free nanomedicines: Mechanisms of formation and biomedical applications[J]. Giant, 2024,18100256. doi: 10.1016/j.giant.2024.100256

    22. [22]

      ZHANG H J, CHEN W J, WANG J, DU W X, WANG B B, SONG L, HU Y, MA X P. A novel ROS-activable self-immolative prodrug for tumor-specific amplification of oxidative stress and enhancing chemotherapy of mitoxantrone[J]. Biomaterials, 2023,293121954. doi: 10.1016/j.biomaterials.2022.121954

    23. [23]

      ZHANG R J, GUO L H, LI Q J, LIANG Y, LIAO Y Y, XU H B, LIU C T, ZHOU G D, WANG L, XU S X, YUAN M M. Biodegradable carrier-free nanomedicine via self-assembly of pure drug molecules for triple sensitization of radiotherapy[J]. ACS Nano, 2025,19(17):16355-16371. doi: 10.1021/acsnano.4c15736

    24. [24]

      XU X D, WANG G W, CHEN Y J, JIN P L, CHEN J F, FANG X, YE D Q, HUANG P T. Ultrasound-activated carrier-free nanoprodrugs enhanced universality and efficiency of solid tumor-targeting chemotherapy[J]. Bioact. Mater., 2025,50:571-584.

    25. [25]

      SU Q Y, WANG Z Y, ZHOU H M, ZHANG M M, DENG W J, WEI X, XIAO J S, DUAN X P. Eradication of large tumors by nanoscale drug self-assembly[J]. Adv. Mater., 2024,36(49)2410536. doi: 10.1002/adma.202410536

    26. [26]

      ZHANG B W, LI L X, HUANG M L, ZHAO E W, LI Y Q, SUN J, HE Z G, FU C W, LIU G J, SUN B J. Probing the impact of surface functionalization module on the performance of mitoxantrone prodrug nanoassemblies: Improving the effectiveness and safety[J]. Nano Lett., 2024,24(12):3759-3767. doi: 10.1021/acs.nanolett.4c00300

    27. [27]

      LI H, ZHANG X L, CHEN S T, CAO C, ZHANG X, LI X, XING S X, JIA S T, LI J S, WANG S. Hypoxia exacerbation-triggered doxorubicin prodrug activation for sequential photodynamic/chemotherapy[J]. ACS Mater. Lett., 2024,6(7):2599-2608. doi: 10.1021/acsmaterialslett.4c00798

    28. [28]

      LE Z C, CHEN Y T, HAN H H, TIAN H K, ZHAO P F, YANG C B, HE Z Y, LIU L X, LEONG K W, MAO H Q, LIU Z J, CHEN Y M. Hydrogen-bonded tannic acid-based anticancer nanoparticle for enhancement of oral chemotherapy[J]. ACS Appl. Mater. Interfaces, 2018,10(49):42186-42197. doi: 10.1021/acsami.8b18979

    29. [29]

      YANG Z T, SHI X Z, QIU L Y. Tunable supramolecular self-assemblies based on cyclodextrin polymer as a loading platform for water-soluble drugs[J]. Carbohydr. Polym., 2025,347122743. doi: 10.1016/j.carbpol.2024.122743

    30. [30]

      ZHANG J X, FANG H K, DAI Y B, LI Y Q, LI L X, ZUO S Y, LIU T, SUN Y X, SHI X B, HE Z G, SUN J, SUN B J. Cholesterol sulfate-mediated ion-pairing facilitates the self-nanoassembly of hydrophilic cationic mitoxantrone[J]. J. Colloid Interface Sci., 2024,669:731-739. doi: 10.1016/j.jcis.2024.05.029

  • 加载中
    1. [1]

      Renjie XueChao MaJing HeXuechao LiYanning TangLifeng ChiHaiming Zhang . Catassembly in the Host-Guest Recognition of 2D Metastable Self-Assembled Networks. Acta Physico-Chimica Sinica, 2024, 40(9): 2309011-0. doi: 10.3866/PKU.WHXB202309011

    2. [2]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    3. [3]

      Wenjian Zhang Mengxin Fan Wenwen Fei Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099

    4. [4]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    5. [5]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    6. [6]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    7. [7]

      Xuyu WANGXinran XIEDengke CAO . Photoreaction characteristics and luminescence modulation in phosphine-anthracene-based Au(Ⅰ) and Ir(Ⅲ) complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1513-1522. doi: 10.11862/CJIC.20250113

    8. [8]

      Jiahao Zeng Hui Chao . 诱导程序性细胞死亡的金属抗肿瘤药物研究. University Chemistry, 2025, 40(6): 145-159. doi: 10.12461/PKU.DXHX202406019

    9. [9]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    10. [10]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    11. [11]

      Xiaoxuan Yu Wukun Liu . Practice of Ideological and Political Education in Medicinal Chemistry for Pharmacy Administration Major: A Case Study on the Discovery of Cisplatin’s Anticancer Function. University Chemistry, 2025, 40(4): 408-414. doi: 10.12461/PKU.DXHX202405200

    12. [12]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    13. [13]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    14. [14]

      Haiyu Nie Chenhui Zhang Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055

    15. [15]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    16. [16]

      Ruiqin FengYe FanYun FangYongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020

    17. [17]

      Jie WEIQing ZHOUDandan DINGXiang JINGFei LI . Photothermal toxicity of Prussian blue nanoparticles to cervical cancer cells. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2345-2357. doi: 10.11862/CJIC.20240435

    18. [18]

      Xiuya Ma Yu Chen Yan Zhang . Stories about Pharmaceuticals. University Chemistry, 2025, 40(7): 232-240. doi: 10.12461/PKU.DXHX202408003

    19. [19]

      Ziheng Zhuang Xiao Xu Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040

    20. [20]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

Metrics
  • PDF Downloads(0)
  • Abstract views(111)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return