Citation: Tengyue ZHANG, Jingjing FENG, Zili LIANG, Jia′nan DAI, Jing MA. Optimization of C-doped BiVO4 performance for tetracycline degradation using response surface methodology-assisted orthogonal experiments[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(12): 2561-2574. doi: 10.11862/CJIC.20250104 shu

Optimization of C-doped BiVO4 performance for tetracycline degradation using response surface methodology-assisted orthogonal experiments

Figures(9)

  • This study presents an integrated optimization strategy that synergistically combines response surface method(RSM) with orthogonal experimental design to achieve efficient performance enhancement of photocatalytic materials. The development of a carbon-doped bismuth vanadate (C-BiVO4) photocatalytic system was employed in this strategy. Orthogonal experiments identified glucose addition as the most significant influencing factor (P is used to determine the significance of factors, P=0.016 1). RSM was used to establish a quantitative relationship between process parameters and photocatalytic performance. The experimental results revealed that 0.9%C-BiVO4-10, prepared under the conditions of a reaction time of 12 h, temperature of 100 ℃, a volume ratio of HNO3 to H2O of 1.25∶1, and glucose addition of 0.01 g, achieved a tetracycline (TC) degradation efficiency of 80.07% under visible light irradiation. X-ray diffraction (XRD), Raman spectrum, and scanning electron microscopy (SEM) analyses demonstrated that carbon doping promotes the phase transition from tetragonal to monoclinic structures and facilitates the formation of regular sheet-like morphologies, thereby increasing active sites. Photoelectrochemical tests further confirmed that doping broadened the light absorption range, reduced carrier recombination rates, and decreased interfacial charge transfer resistance, significantly improving the photocatalytic performance of BiVO4.
  • 加载中
    1. [1]

      GUO Z F, ZHANG T T, YANG H, ZHU X L, LU S Y, CHEN A J, FAN M Y, QU J. Unraveling tetracycline and its degradation product: Induction mechanisms of antibiotic resistance in escherichia coli[J]. Sci. Total Environ., 2025, 970: 178959  doi: 10.1016/j.scitotenv.2025.178959

    2. [2]

      LU P, PENG Y Q, WANG X X, CHEN S Y, SHANG J, QI S Y, YANG Y, HU X L, ZHAO Z L. Study on the degradation performance of tetracycline in water by chitin-based biochar-Bi2O3[J]. Chem. Phys. Lett., 2025, 866: 141967  doi: 10.1016/j.cplett.2025.141967

    3. [3]

      YUE T C, WANG L L, LI W, ZHANG J J, WANG D Z, BU X H. Efficient degradation of tetracycline hydrochloride via Fe-MO-initiated photo-self-fenton catalysis[J]. Sep. Purif. Technol., 2025, 363: 132127  doi: 10.1016/j.seppur.2025.132127

    4. [4]

      CHENG G, LIU X, XIONG J Y. Recent advances in coupling pollutants degradation with hydrogen production by semiconductor photocatalysis[J]. Chem. Eng. J., 2024, 501: 157491  doi: 10.1016/j.cej.2024.157491

    5. [5]

      WANG L N, CHEN T Y, CUI Y J, WU J W, ZHOU X Y, XU M F, LIU Z Q, MAO W, ZENG X M, SHEN W, LIU C, ZHU J, SONG J, PENG L M, ZHENG S T, SHI H W, TANG S. Rational design of environmentally friendly carbon nanotube embedded artificial vesicle‐structured photocatalysts for organic pollutants degradation[J]. Adv. Funct. Mater., 2024, 34(16): 2313653  doi: 10.1002/adfm.202313653

    6. [6]

      ZHAO Q, GUO Z N, LI S Y, WANG J L, LI Z P, JIA Z F, WANG K W, GUO Y. Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties[J]. Chinese J. Inorg. Chem., 2024, 40(5): 885-894  doi: 10.11862/CJIC.20230435

    7. [7]

      ALIJANI H Q, IRAVANI S, VARMA R S. Bismuth vanadate (BiVO4) nanostructures: Eco-friendly synthesis and their photocatalytic applications[J]. Catalysts, 2023, 13(1): 59

    8. [8]

      SALEM M, GHANNAM H, NASR S, ALMOHAMMEDI A, MASSOUDI I. Relative analysis explored the structural and optoelectronic properties of ZnO films doped with transition metals[J]. Inorg. Chem. Commun., 2024, 168: 112847  doi: 10.1016/j.inoche.2024.112847

    9. [9]

      KAUSAR S, MUNIR R M, IQBAL T, AFSHEEN S, MANSHA M S, ALI A M, SAYED M A. Comprehensive study on the synthesis and photocatalytic properties of pure bismuth vanadate: Characterization and theoretical analysis[J]. Inorg. Chem. Commun., 2025, 172: 113664  doi: 10.1016/j.inoche.2024.113664

    10. [10]

      LI J, LI H P, ZHAO H, LIU Q L. Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate [J]. Chinese J. Inorg. Chem., 2024, 40(3): 601-612  doi: 10.11862/CJIC.20230401

    11. [11]

      SALGADO-BLANCO D, LÓPEZ-URÍAS F. Boron and carbon in two-dimensional nitrogene structures: Heterodoping, doping, and chemical functionalization[J]. Surf. Interfaces, 2024, 48: 104254  doi: 10.1016/j.surfin.2024.104254

    12. [12]

      QIAN J N, ZHAO C Y, CHEN M H, AN L, WANG K W, PAN L K, WU W D, LIU D. Optimizing carbon doping and black phosphorus heterojunctions in three dimensional carbon nitride for exceptional photocatalytic activity[J]. Sep. Purif. Technol., 2025, 361: 131657  doi: 10.1016/j.seppur.2025.131657

    13. [13]

      ZHANG N, WANG Y C, XING Z P, LI Z Z, ZHOU W. Carbon doping and oxygen vacancy-tungsten trioxide/Cu3SnS4 S-scheme heterojunctions for boosting visible-light-driven photocatalytic performance[J]. ACS Appl. Mater. Interfaces, 2025, 17: 18296-18306  doi: 10.1021/acsami.4c22048

    14. [14]

      GUSTAVSEN K R, FENG T, HUANG H, LI G, NARKIEWICZ U, WANG K Y. DFT calculation of carbon-doped TiO2 nanocomposites[J]. Materials, 2023, 16(18): 6117  doi: 10.3390/ma16186117

    15. [15]

      WANG Y X, CHEN D M, ZHANG J N, BALOGUN M S, WANG P S, TONG Y X, HUANG Y C. Charge relays via dual carbon-actions on nanostructured BiVO4 for high performance photoelectrochemical water splitting[J]. Adv. Funct. Mater., 2022, 32(13): 2112738  doi: 10.1002/adfm.202112738

    16. [16]

      YAO M M, GAN L H, LIU M X, TRIPATHI P K, LIU Y F, HU Z H. Template-engaged in situ synthesis of carbon-doped monoclinic mesoporous BiVO4: Photocatalytic treatment of rhodamine b[J]. J. Mater. Eng. Perform., 2015, 24(6): 2359-2367  doi: 10.1007/s11665-014-1370-4

    17. [17]

      ZHANG S Y, MAO Y J, LIU F, XU H T, QU Z G, LIAO X W. Multi-objective optimization and evaluation of PEMFC performance based on orthogonal experiment and entropy weight method[J]. Energy Convers. Manag., 2023, 291: 117310  doi: 10.1016/j.enconman.2023.117310

    18. [18]

      XU G, GONG X J, YU Y H, CHEN X H. A Rapid method for the determination of SBS content based on the principle of orthogonal testing[J]. Appl. Sci., 2021, 11(22): 10911  doi: 10.3390/app112210911

    19. [19]

      LIU X L, TANG L G, ZHOU G S, WANG J Q, SONG M S, HANG Y, MA C C, HAN S, YAN M, LU Z Y. In situ formation of BiVO4/MoS2 heterojunction: Enhanced photogenerated carrier transfer rate through electron transport channels constructed by graphene oxide[J]. Mater. Res. Bull., 2023, 157: 112040  doi: 10.1016/j.materresbull.2022.112040

    20. [20]

      BELLO I, ADENIYI A, MUKAILA T, HAMMED A. Optimization of soybean protein extraction with ammonium hydroxide (NH4OH) using response surface methodology[J]. Foods, 2023, 12(7): 1515  doi: 10.3390/foods12071515

    21. [21]

      HOSSAIN S K S, RAHMAN A F A, ARSAD A, BASU A, PANG A L, HARUN Z, ALWI M M A, ALI S S. Effect of ultrasonication parameters on the structural, morphological, and electrical properties of polypyrrole nanoparticles and optimization by response surface methodology[J]. Polymers, 2023, 15(6): 1528  doi: 10.3390/polym15061528

    22. [22]

      LEE E Y, WONG S Y, PHANG S J, WONG V L, CHEAH K H. Additively manufactured photoreactor with immobilized thermoset acrylic-graphitic carbon nitride nanosheets for water remediation: Response surface methods and adsorption modelling studies[J]. Chem. Eng. J., 2023, 455: 140633  doi: 10.1016/j.cej.2022.140633

    23. [23]

      ZHANG Y X, HE K, CHEN L, LIU W, YUAN J L, GAO Y T, QI Y F, LIU B J. Photocatalytic degradation of enrofloxacin with CoAl-LDH mediated persulfate system: Efficiency evaluations and reaction pathways[J]. Emerg. Contam., 2024, 10(3): 100328  doi: 10.1016/j.emcon.2024.100328

    24. [24]

      MA L Z, ZHANG Z H, DUAN J L, LI J, LIN Q Y, JIANG Y L, ZHU K F, FANG Z Y, JI B, YANG Z. Optimize the preparation process of m-TiO2@CdS by response surface methodology to enhance the light intensity adaptability of photocatalytic degradation of tetracycline[J]. J. Alloy. Compd., 2025, 1010: 177979  doi: 10.1016/j.jallcom.2024.177979

    25. [25]

      ZHAO D Q, ZONG W J, FAN Z H, FANG Y W, XIONG S M, DU M, WU T H, JI F Y, XU X. Synthesis of carbon-doped nanosheets m-BiVO4 with three-dimensional (3D) hierarchical structure by one-step hydrothermal method and evaluation of their high visible-light photocatalytic property[J]. J. Nanopart. Res., 2017, 19(4): 124  doi: 10.1007/s11051-017-3818-6

    26. [26]

      BAI J W, LI Y, JIN P, WANG J F, LIU L. Facile preparation 3D ZnS nanospheres-reduced graphene oxide composites for enhanced photodegradation of norfloxacin[J]. J. Alloy. Compd., 2017, 729: 809-815  doi: 10.1016/j.jallcom.2017.07.057

    27. [27]

      HAIDER S, KHAN S U, NAJEEB J, NAEEM S, RAFIQUE H, MUNIR H, AL-MASRY W A, NAZAR M F. Synthesis of cadmium oxide nanostructures by using for response surface methodology based photocatalytic degradation of methylene blue[J]. J. Clean Prod., 2022, 365: 132822  doi: 10.1016/j.jclepro.2022.132822

    28. [28]

      PAN J H, ZHANG Z M, YAO Z F, FAN S Y, ZHU T T, XING C C, LIU Y J, CHEN J H, ZHU H X, HOU Y P, WANG S F. Potential modulation strategy on bismuth vanadate-based semiconductor to enhance antibiotic degradation in heterogeneous electro-fenton system[J]. Chem. Eng. J., 2024, 493: 152617  doi: 10.1016/j.cej.2024.152617

    29. [29]

      YANG J P, JIANG L W, LIU Z H, TANG Z, WU A H. Multifunctional interstitial-carbon-doped FeCoNiCu high entropy alloys with excellent electromagnetic-wave absorption performance[J]. J. Mater. Sci. Technol., 2022, 113: 61-70  doi: 10.1016/j.jmst.2021.09.025

    30. [30]

      ZHANG Q, WANG Y L, JIN X T, LIU X. Selective and controlled H generation upon additive-free HCOOH dehydrogenation over a Pd/NCS nanocatalyst[J]. Nanoscale, 2023, 15(39): 15975-15981  doi: 10.1039/D3NR03797E

    31. [31]

      WANG X Y, YOU J H, XUE Y J, REN J L, ZHANG K D, FU B, XUE Q Z, TIAN J, ZHANG H Z. Structural regulation of three-dimensional bismuth vanadate nanochannels for excellent visible light photocatalytic nitrogen fixation[J]. Appl. Catal. B ‒ Environ. Energy, 2025, 363: 124817  doi: 10.1016/j.apcatb.2024.124817

    32. [32]

      WANG Y Q, GUAN J N, LI L, WANG Z R, YUAN X, YAN Y, LI X D, LU N. Graphite-bridged indirect Z-scheme system TiO2-C-BiVO4 film with enhanced photoelectrocatalytic activity towards serial bisphenols[J]. Environ. Res., 2020, 191: 110221  doi: 10.1016/j.envres.2020.110221

    33. [33]

      YE S J, ZHOU X, XU Y B, LAI W K, YAN K, HUANG L, LING J Y, ZHENG L. Photocatalytic performance of multi-walled carbon nanotube/BiVO4 synthesized by electro-spinning process and its degradation mechanisms on oxytetracycline[J]. Chem. Eng. J., 2019, 373: 880-890  doi: 10.1016/j.cej.2019.05.109

    34. [34]

      CRUZ J C, HIRATA S. Monte carlo explicitly correlated second-order many-body green′s function calculations of semiconductor band gaps[J]. J. Phys. Chem. C, 2024, 128(40): 17098-17111  doi: 10.1021/acs.jpcc.4c03848

    35. [35]

      ZHAO Y X, HU H, ZHOU X, YANG S J, YANG Y. Preparation and photocatalytic degradation performance of MOF-808/BiOCl composites[J]. Chinese J. Inorg. Chem., 2023, 39(8): 1553-1563

  • 加载中
    1. [1]

      Jiahong WANGZekun XUTianjiao LUJinming HUANG . Performance of N, Mn doped semi-coke activated carbon catalyzed ozone oxidation for the degradation of tetracycline hydrochloride in water. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2549-2560. doi: 10.11862/CJIC.20250120

    2. [2]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    3. [3]

      Rui LIUXinjun ZHOUTao WANG . Photocatalytic degradation performance of tetracycline by MOF-74-Mn/g-C3N4 Z-type heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1796-1804. doi: 10.11862/CJIC.20250033

    4. [4]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    5. [5]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    6. [6]

      Xianghai SongXiaoying LiuZhixiang RenXiang LiuMei WangYuanfeng WuWeiqiang ZhouZhi ZhuPengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-0. doi: 10.1016/j.actphy.2025.100055

    7. [7]

      Ziyang LongQuanzheng LiChengliang ZhangHaifeng Shi . BiVO4/WO3-x S-scheme heterojunctions with amplified internal electric field for boosting photothermal-catalytic activity. Acta Physico-Chimica Sinica, 2025, 41(10): 100122-0. doi: 10.1016/j.actphy.2025.100122

    8. [8]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    9. [9]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    10. [10]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    11. [11]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    12. [12]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    13. [13]

      Xian-Wei LvXinyuan DingJiaxing GongXuhuan YanDayong HuangJianxin GengZhong-Yong Yuan . Research progress on orbital hybridization in photocatalysis and electrocatalysis. Acta Physico-Chimica Sinica, 2026, 42(2): 100151-0. doi: 10.1016/j.actphy.2025.100151

    14. [14]

      Jinwang WuQijing XieChengliang ZhangHaifeng Shi . Rationally Designed ZnFe1.2Co0.8O4/BiVO4 S-Scheme Heterojunction with Spin-Polarization for the Elimination of Antibiotic. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-0. doi: 10.1016/j.actphy.2025.100050

    15. [15]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    16. [16]

      Zhinan GUOJunli WANGQiang ZHAOZhifang JIAZuopeng LIKewei WANGYong GUO . Cu2O/Bi2CrO6 Z-scheme heterojunction: Construction and photocatalytic degradation properties for tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 741-752. doi: 10.11862/CJIC.20240403

    17. [17]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    18. [18]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    19. [19]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    20. [20]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

Metrics
  • PDF Downloads(2)
  • Abstract views(133)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return