Citation: Lixing LU, Shaoxian LIU, Jian XU, Ziqi JIN, Jiongjia CHENG, Jiyang ZHAO, Fubo WANG, Haiying WANG. [FeFe]-hydrogenase-containing compound and its photocatalytic H2-production performance[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(12): 2584-2590. doi: 10.11862/CJIC.20250200 shu

[FeFe]-hydrogenase-containing compound and its photocatalytic H2-production performance

  • Corresponding author: Haiying WANG, wanghaiying@nju.edu.cn
  • Received Date: 12 June 2025
    Revised Date: 11 July 2025

Figures(6)

  • A compound containing [FeFe]-hydrogenase, [Fe2((SCH2)2R)(CO)6] (1) (R=4-{(1H-benzo[d]imidazol-1-yl)methyl}-anilino), was prepared and thoroughly characterized by infrared spectroscopy, single-crystal X-ray diffraction, and density functional theory calculations. Its performance as a photocatalyst for hydrogen production via water splitting was evaluated under simulated sunlight. Within 3 h, the amount of H2 produced was 386.5 μmol, achieving a catalytic efficiency of 25.26 μmol·mg-1·h-1 and a turnover number (TON) of 0.45.
  • 加载中
    1. [1]

      ZOU Z G, YE J H, SAYAMA K, ARAKAWA H. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst[J]. Nature, 2001, 414(6864): 625-627  doi: 10.1038/414625a

    2. [2]

      ARMAROLI N, BALZANI V. The future of energy supply: Challenges and opportunities[J]. Angew. Chem. ‒Int. Edit., 2007, 46(1/2): 52-66

    3. [3]

      GREENING C, GRINTER R. Microbial oxidation of atmospheric trace gases[J]. Nat. Rev. Microbiol., 2022, 20(9): 513-528  doi: 10.1038/s41579-022-00724-x

    4. [4]

      SCHWARTZ E, FRIEDRICH B. The H2-metabolizing prokaryotes[M]//DWORKIN M, FALKOW S, ROSENBERG E, SCHLEIFER K H, STACKEBRANDT E. The prokaryotes: Vol. 2. New York: Springer, 2006: 496-563

    5. [5]

      NOCERA D G. Solar fuels and solar chemicals industry[J]. Accounts Chem. Res., 2017, 50(3): 616-619  doi: 10.1021/acs.accounts.6b00615

    6. [6]

      GRAY H B. Powering the planet with solar fuel[J]. Nat. Chem., 2009, 1(1): 7-7  doi: 10.1038/nchem.141

    7. [7]

      MAEDA K, TERAMURA K, LU D L, TAKATA T, SAITO N, INOUE Y, DOMEN K. Photocatalyst releasing hydrogen from water[J]. Nature, 2006, 440(7082): 295-295  doi: 10.1038/440295a

    8. [8]

      WANG X C, MAEDA K, THOMAS A, TAKANABE K, XIN G, CARLSSON J M, DOMEN K, ANTONIETTI M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nat Mater, 2009, 8(1): 76-80  doi: 10.1038/nmat2317

    9. [9]

      SIDABRAS J W, STRIPP S T. A personal account on 25 years of scientific literature on [FeFe]-hydrogenase[J]. J. Biol. Inorg. Chem., 2023, 28(4): 355-378  doi: 10.1007/s00775-023-01992-5

    10. [10]

      CASTNER A T, JOHNSON B A, COHEN S M, OTT S. Mimicking the electron transport chain and active site of [FeFe] hydrogenases in one metal-organic framework: Factors that influence charge transport[J]. J. Am. Chem. Soc., 2021, 143(21): 7991-7999  doi: 10.1021/jacs.1c01361

    11. [11]

      KARAYILAN M, BREZINSKI W P, CLARY K E, LICHTENBERGER D L, GLASS R S, PYUN J. Catalytic metallopolymers from [2Fe-2S] clusters: Artificial metalloenzymes for hydrogen production[J]. Angew. Chem. ‒Int. Edit., 2019, 58(23): 7537-7550  doi: 10.1002/anie.201813776

    12. [12]

      GAO S, LIU Y, SHAO Y D, JIANG D Y, DUAN Q. Iron carbonyl compounds with aromatic dithiolate bridges as organometallic mimics of [FeFe] hydrogenases[J]. Coord. Chem. Rev., 2020, 402: 213081  doi: 10.1016/j.ccr.2019.213081

    13. [13]

      SONG L C, GU Z C, ZHANG W W, LI Q L, WANG Y X, WANG H F. Synthesis, structure, and electrocatalysis of butterfly [Fe2SP] cluster complexes relevant to [FeFe]-hydrogenases[J]. Organometallics, 2015, 34(16): 4147-4157  doi: 10.1021/acs.organomet.5b00560

    14. [14]

      PULLEN S, FEI H H, ORTHABER A, COHEN S M, OTT S. Enhanced photochemical hydrogen production by a molecular diiron catalyst incorporated into a metal-organic framework[J]. J. Am. Chem. Soc., 2013, 135(45): 16997-17003  doi: 10.1021/ja407176p

    15. [15]

      VÖLLER J S. Air-stable [FeFe] hydrogenases[J]. Nat. Catal., 2018, 1(8): 564-564  doi: 10.1038/s41929-018-0137-y

    16. [16]

      BOGAN L E, LESCH D A, RAUCHFUSS T B. Synthesis of heterometallic cluster compounds from Fe3(μ3-Te)2(CO)9 and comparisons with analogous sulfide clusters[J]. J. Organomet. Chem., 1983, 250(1): 429-438  doi: 10.1016/0022-328X(83)85067-0

    17. [17]

      JIN G X, WANG F B, ZHAO H R, WANG X H, LI Y L, SUN Y, CHENG J Y, SHENG X H, WANG H Y, MA J P, LIU Q K. [Fe2S2]-hydrogenase-mimic-containing supramolecule and coordination polymers: Syntheses, H2 evolution properties, and their structure-function relationship study[J]. Cryst. Growth Des., 2024, 24(7): 2667-2671  doi: 10.1021/acs.cgd.4c00144

    18. [18]

      BENNDORF S, SCHLEUSENER A, MÜLLER R, MICHEEL M, BARUAH R, DELLITH J, UNDISZ A, NEUMANN C, TURCHANIN A, LEOPOLD K, WEIGAND W, WÄCHTLER M. Covalent functionalization of CdSe quantum dot films with molecular [FeFe] hydrogenase mimics for light-driven hydrogen evolution[J]. ACS Appl. Mater. Interfaces, 2023, 15(15): 18889-18897  doi: 10.1021/acsami.3c00184

    19. [19]

      MERINERO A D, COLLADO A, CASARRUBIOS L, GÓMEZ-GALLEGO M, RAMÍREZ DE ARELLANO C, ARELLANO C, CABALLERO A, ZAPATA F, SIERRA M A. Triazole-containing [FeFe] hydrogenase mimics: Synthesis and electrocatalytic behavior[J]. Inorg. Chem., 2019, 58(23): 16267-16278  doi: 10.1021/acs.inorgchem.9b02813

    20. [20]

      JIN G X, HAN C C, ZHAO H R, WU X W, LI Y L, WANG H Y, MA J P. Small-molecules-induced metal-organic-framework-based photosensitizer for greatly enhancing H2 production efficiency[J]. ACS Mater. Lett., 2024, 6(2): 375-383  doi: 10.1021/acsmaterialslett.3c01286

    21. [21]

      CHEN X H, YANG F, HAN C C, HAN L C, WANG F B, JIN G X, WANG H Y, MA J P. [Fe2S2-Agx]-hydrogenase active-site-containing coordination polymers and their photocatalytic H2 evolution reaction properties[J]. Inorg. Chem., 2022, 61(34): 13261-13265  doi: 10.1021/acs.inorgchem.2c01818

    22. [22]

      GAO L G, XU C, SU Y J, LIU A M, MA T L. Cascaded band gap design for highly efficient electron transport layer-free perovskite solar cells[J]. Chem. Commun., 2022, 58(47): 6749-6752  doi: 10.1039/D2CC01807A

    23. [23]

      COSTENTIN C, DROUET S, ROBERT M, SAVÉANT J M. Turnover numbers, turnover frequencies, and overpotential in molecular catalysis of electrochemical reactions. Cyclic voltammetry and preparative-scale electrolysis[J]. J. Am. Chem. Soc., 2012, 134(27): 11235-11242  doi: 10.1021/ja303560c

  • 加载中
    1. [1]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    2. [2]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    3. [3]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    4. [4]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    5. [5]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    6. [6]

      Min ZHUYuxin WANGXiao LIYaxu XUJunwen ZHUZihao WANGYu ZHUXiaochen HUANGDan XUMonsur Showkot Hossain Abul . Construction of AgVO3/ZIF-8 composites for enhanced degradation of tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 994-1006. doi: 10.11862/CJIC.20240392

    7. [7]

      Jin ZHANGYuting WANGBin YUYuxin ZHONGYufeng ZHANG . Corn straw-derived carbon/BiOBr composite: Synthesis and photocatalytic degradation performance for rhodamine B. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1397-1408. doi: 10.11862/CJIC.20250028

    8. [8]

      Xiaofan ZHANGYu DUANMeijie SHINan LURenhong LIXiaoqing YAN . Z-scheme Co3O4/BiOBr heterojunction for efficient photoreduction CO2 reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1878-1888. doi: 10.11862/CJIC.20250079

    9. [9]

      Qi HUANGYouyi WANGZhujian MAOZhonghui YEWeihan CHENJui-yeh RAUJian HUANG . Enhanced photocatalytic tetracycline degradation via 2D CdS/Ti3AlC2 MAX heterostructure. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2385-2398. doi: 10.11862/CJIC.20250159

    10. [10]

      Ruolin CHENGYue WANGFei YANGHuagen LIANGShijian LU . Application of metal-organic frameworks (MOFs) in photocatalytic CO2 cycloaddition reaction: A mini review. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2429-2440. doi: 10.11862/CJIC.20250242

    11. [11]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    12. [12]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    13. [13]

      Deqi FanYicheng TangYemei LiaoYan MiYi LuXiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441

    14. [14]

      Miaosen YangJunyang DingZhiwei WangJingwen ZhangZimo PengXijun Liu . NiMo-based alloy and its sulfides for energy-saving hydrogen production via sulfion oxidation assisted alkaline seawater splitting. Chinese Chemical Letters, 2025, 36(9): 110861-. doi: 10.1016/j.cclet.2025.110861

    15. [15]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    16. [16]

      Kai PENGXinyi ZHAOZixi CHENXuhai ZHANGYuqiao ZENGJianqing JIANG . Progress in the application of high-entropy alloys and high-entropy ceramics in water electrolysis. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1257-1275. doi: 10.11862/CJIC.20240454

    17. [17]

      Yan FanJiao TanCuijuan ZouXuliang HuXing FengXin-Long Ni . Unprecedented stepwise electron transfer and photocatalysis in supramolecular assembly derived hybrid single-layer two-dimensional nanosheets in water. Chinese Chemical Letters, 2025, 36(4): 110101-. doi: 10.1016/j.cclet.2024.110101

    18. [18]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    19. [19]

      Hong Yin Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382

    20. [20]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

Metrics
  • PDF Downloads(0)
  • Abstract views(99)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return