Citation: Zhiqiang XING, Jinling LIU, Mingmin SU, Lei ZHANG, Lijun YANG. CoNi dual-single-atom catalyst for electrocatalytic H2O2 production and in situ electro-Fenton degradation of pollutants[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(12): 2479-2490. doi: 10.11862/CJIC.20250181 shu

CoNi dual-single-atom catalyst for electrocatalytic H2O2 production and in situ electro-Fenton degradation of pollutants

  • Corresponding author: Lijun YANG, lijunyang@lnu.edu.cn
  • Received Date: 30 May 2025
    Revised Date: 30 October 2025

Figures(6)

  • Leveraging the synergistic effects of atomically dispersed metallic active sites and N, O co-doped carbon substrate, an atomically dispersed heteronuclear bimetallic single-atom electrocatalyst (Co/Ni-SACs) was designed and synthesized for highly selective electrocatalytic two-electron oxygen reduction reaction (ORR) to produce H2O2. Compared to monometallic single-atom catalysts, Co/Ni-SACs exhibited significantly enhanced electrocatalytic ORR activity and selectivity to two-electron ORR. The H2O2 selectivity of Co/Ni-SACs reached approximately 80% within the potential range of 0-0.6 V (vs RHE). At the optimal potential of 0.4 V (vs RHE), the H2O2 yield achieved a maximum of ca. 1.88 mol·L-1·gcat-1·cm-2 over 4.5 h of electrolysis, along with stable current response, selectivity, and recyclability. Furthermore, a dual-cathode electro-Fenton system was constructed using Co/Ni-SACs and stainless-steel mesh (SSM) without additional reagents, enabling efficient activation of in-situ-generated H2O2 to produce highly oxidative hydroxyl radicals (·OH). This system achieved effective degradation of various organic pollutants (e.g., dyes, antibiotics) and detoxification of heavy metal Cr(Ⅵ).
  • 加载中
    1. [1]

      WANG Q, REN L P, ZHANG J, CHEN X, CHEN C Y, ZHANG F, WANG S, CHEN J, WEI J J. Recent progress on the catalysts and device designs for (photo)electrochemical on-site H2O2 production[J]. Adv. Energy Mater., 2023, 13: 2301543  doi: 10.1002/aenm.202301543

    2. [2]

      DENG Z P, CHOI S J, LI G, WANG X L. Advancing H2O2 electrosynthesis: Enhancing electrochemical systems, unveiling emerging applications, and seizing opportunities[J]. Chem. Soc. Rev., 2024, 53: 8137-8181  doi: 10.1039/D4CS00412D

    3. [3]

      MAITI K, MAITI S, CURNAN M T, KIM H J, HAN J W. Engineering single atom catalysts to tune properties for electrochemical reduction and evolution reactions[J]. Adv. Energy Mater., 2021, 11: 2101670  doi: 10.1002/aenm.202101670

    4. [4]

      CHEN S Y, LUO T, LI X Q, CHEN K J, FU J W, LIU K, CAI C, WANG Q Y, LI H M, CHEN Y, MA C, ZHU L, LU Y R, CHAN T S, ZHU M S, CORT S E, LIU M. Identification of the highly active Co-N4 coordination motif for selective oxygen reduction to hydrogen peroxide[J]. J. Am. Chem. Soc., 2022, 144: 14505-14516  doi: 10.1021/jacs.2c01194

    5. [5]

      GUO Y, ZHANG R, ZHANG S C, HONG H, ZHAO Y W, HUANG Z D, HAN C P, LI H F, ZHI C Y. Ultrahigh oxygen-doped carbon quantum dots for highly efficient H2O2 production via two-electron electrochemical oxygen reduction[J]. Energ. Environ. Sci., 2022, 15: 4167-4174  doi: 10.1039/D2EE01797K

    6. [6]

      LIU M, LI N, CAO S F, WANG X M, LU X Q, KONG L J, XU Y H, BU X H. A "pre-constrained metal twins" strategy to prepare efficient dual-metal-atom catalysts for cooperative oxygen electrocatalysis[J]. Adv. Mater., 2022, 34: 2107421  doi: 10.1002/adma.202107421

    7. [7]

      OUYANG Y X, SHI L, BAI X W, LI Q, WANG J L. Breaking scaling relations for efficient CO2 electrochemical reduction through dual-atom catalysts[J]. Chem. Sci., 2020, 11: 1807-1813  doi: 10.1039/C9SC05236D

    8. [8]

      CHEN Z, LIAO X B, SUN C L, ZHAO K N, YE D X, LI J T, WU G, FANG J H, ZHAO H B, ZHANG J J. Enhanced performance of atomically dispersed dual-site Fe-Mn electrocatalysts through cascade reaction mechanism[J]. Appl. Catal. B‒Environ., 2021, 288: 120021  doi: 10.1016/j.apcatb.2021.120021

    9. [9]

      LIU K H, LI J, LIU Y Y, WANG M R, CUI H T. Dual metal atom catalysts: Advantages in electrocatalytic reactions[J]. J. Energy Chem., 2023, 79: 515-534  doi: 10.1016/j.jechem.2023.01.021

    10. [10]

      OLVERA-VARGAS H, TRELLU C, NIDHEESH P V, MOUSSET E, GANIYU S O, MART NEZ-HUITLE C A, ZHOU M H, OTURAN M A. Challenges and opportunities for large-scale applications of the electro-Fenton process[J]. Water Res., 2024, 266: 122430  doi: 10.1016/j.watres.2024.122430

    11. [11]

      GUO D L, LIU Y B, JI H D, WANG C C, CHEN B, SHEN C S, LI F, WANG Y X, LU P, LIU W. Silicate-enhanced heterogeneous flow-through electro-Fenton system using iron oxides under nanoconfinement[J]. Environ. Sci. Technol., 2021, 55: 4045-4053  doi: 10.1021/acs.est.1c00349

    12. [12]

      HEIDARI Z, PELALAK R, ZHOU M H. A critical review on the recent progress in application of electro-Fenton process for decontamination of wastewater at near-neutral pH[J]. Chem. Eng. J., 2023, 474: 145741  doi: 10.1016/j.cej.2023.145741

    13. [13]

      WEI S J, SUN Y B, QIU Y Z, LI A, CHIANG C Y, XIAO H, QIAN J S, LI Y D. Self-carbon-thermal-reduction strategy for boosting the Fenton-like activity of single Fe-N4 sites by carbon-defect engineering[J]. Nat. Commun., 2023, 14: 7549  doi: 10.1038/s41467-023-43040-5

    14. [14]

      ZHU Y S, DENG F X, QIU S, MA F, ZHENG Y S, GAO L. A self-sufficient electro-Fenton system with enhanced oxygen transfer for decontamination of pharmaceutical wastewater[J]. Chem. Eng. J., 2022, 429: 132176  doi: 10.1016/j.cej.2021.132176

    15. [15]

      WANG J B, LI S Z, QIN Q Y, PENG C. Sustainable and feasible reagent-free electro-Fenton via sequential dual-cathode electrocatalysis[J]. Proc. Natl. Acad. Sci. U. S. A., 2021, 118: e2108573118  doi: 10.1073/pnas.2108573118

    16. [16]

      YANG L J, SUN G, FU H L, ZHANG L. Isolation of cobalt single atoms on hollow B, N co-doped defective carbon nanotubes for hydrogen peroxide production and tandem reagent-free electro-Fenton oxidation[J]. Chem. Eng. J., 2023, 472: 145052  doi: 10.1016/j.cej.2023.145052

    17. [17]

      WENG C, CHUANG Y H, DAVEY B, MITCH W A. Reductive electrochemical activation of hydrogen peroxide as an advanced oxidation process for treatment of reverse osmosis permeate during potable reuse[J]. Environ. Sci. Technol., 2020, 54: 12593-12601  doi: 10.1021/acs.est.0c02144

    18. [18]

      HAIDER M R, JIANG W L, HAN J L, SHARIF H M A, DING Y C, CHENG H Y, WANG A J. In-situ electrode fabrication from polyaniline derived N-doped carbon nanofibers for metal-free electro-Fenton degradation of organic contaminants[J]. Appl. Catal. B‒Environ., 2019, 256: 117774  doi: 10.1016/j.apcatb.2019.117774

    19. [19]

      SU P, ZHOU M H, LU X Y, YANG W L, REN G B, CAI J J. Electrochemical catalytic mechanism of N-doped graphene for enhanced H2O2 yield and in-situ degradation of organic pollutant[J]. Appl. Catal. B‒Environ., 2019, 245: 583-595  doi: 10.1016/j.apcatb.2018.12.075

    20. [20]

      YANG L J, FU H L, HE W C, LI H, MA T Y, ZHANG L. Confined CoNi dual single-atom sites in hollow nanoreactors for pH-universal O2-to-H2O2 conversion and promoting electro-Fenton process[J]. Appl. Catal. B‒Environ., 2025, 374: 125372  doi: 10.1016/j.apcatb.2025.125372

    21. [21]

      HUMMERS W S J, OFFEMAN R E. Preparation of graphitic oxide[J]. J. Am. Chem. Soc., 1958, 80: 1339  doi: 10.1021/ja01539a017

    22. [22]

      ZHANG M D, HUANG J R, LIANG C P, CHEN X M, LIAO P Q. Continuous electrosynthesis of pure H2O2 solution with medical-grade concentration by a conductive Ni-phthalocyanine-based covalent organic framework[J]. J. Am. Chem. Soc., 2024, 146: 31034-31041  doi: 10.1021/jacs.4c10675

    23. [23]

      ZHANG L, HU Y D, ZHENG J H. Fabrication of 3D hierarchical CoSnO3@CoO pine needle-like array photoelectrode for enhanced photoelectrochemical properties[J]. J. Mater. Chem. A, 2017, 5: 18664-18673  doi: 10.1039/C7TA05047J

    24. [24]

      YANG C Y, ZHUANG C F, ZHAI Z X, ZHAO X, HUANG D J, TIAN D, MIN C G, ZHAO J, WANG Y. Phase regulation of Ni-based catalyst promotes selective hydrogenation of furfural: Effect of glycerol and Zn content[J]. Appl. Catal. B‒Environ., 2023, 334: 122854  doi: 10.1016/j.apcatb.2023.122854

    25. [25]

      HU B, HU W X, QIAN X Y, ZUO M, WU Z L, SONG Y H, ZHENG Q, SHAN G R, DU M. Scandium doping enables superior cycling performance of NiCo-LDHs-based supercapacitors via NH4Br-assisted electrodeposition[J]. J. Energy Storage, 2024, 92: 112069  doi: 10.1016/j.est.2024.112069

    26. [26]

      ZHANG B P, HAN B, GUAN C T, GUO Q, LUO Y, JIANG J. Highly selective oxygen reduction to H2O2 on π-d conjugated coordination polymers: The effect of coordination atoms[J]. Chem. Eng. J., 2023, 460: 141688  doi: 10.1016/j.cej.2023.141688

    27. [27]

      PALANISELVAM T, KASHYAP V, BHANGE S N, BAEK J B, KURUNGOT S. Nanoporous graphene enriched with Fe/Co-N active sites as a promising oxygen reduction electrocatalyst for anion exchange membrane fuel cells[J]. Adv. Funct. Mater., 2016, 26: 2150-2162  doi: 10.1002/adfm.201504765

    28. [28]

      YANG L J, CHENG H M, LI H, SUN G, LIU S T, MA T Y, ZHANG L. Atomic confinement empowered CoZn dual-single-atom nanotubes for H2O2 production in sequential dual-cathode electro-Fenton process[J]. Adv. Mater., 2024, 36: 2406957  doi: 10.1002/adma.202406957

    29. [29]

      JUNG E Y, SHIN H J, LEE B H, EFREMOV V, LEE S H, LEE H S, KIM J, ANTINK W H, PARK S B, LEE K S, CHO S P, YOO J S, SUNG Y E, HYEON T W. Atomic-level tuning of Co-N-C catalyst for high-performance electrochemical H2O2 production[J]. Nat. Mater., 2020, 19: 436-442  doi: 10.1038/s41563-019-0571-5

    30. [30]

      MENG X F, HUANG H, ZHANG X X, HU L, TANG H B, HAN M M, ZHENG F C, WANG H. Steering C—C coupling by hollow Cu2O@C/N nanoreactors for highly efficient electroreduction of CO2 to C2+ products[J]. Adv. Funct. Mater., 2024, 34: 2312719  doi: 10.1002/adfm.202312719

    31. [31]

      SHARMA N, SHARMA V, JAIN Y, KUMARI M, GUPTA R, SHARMA S K, SACHDEV K. Synthesis and characterization of graphene oxide (GO) and reduced graphene oxide (rGO) for gas sensing application[J]. Macromol. Symp., 2017, 376: 1700006  doi: 10.1002/masy.201700006

    32. [32]

      HERATH A, TIOZON R J, KRETZSCHMAR T, SREENIVASULU N, MAHON P, BUTARDO V. Machine learning approach for high-throughput phenolic antioxidant screening in black Rice germplasm collection based on surface FTIR[J]. Food Chem., 2024, 460: 140728  doi: 10.1016/j.foodchem.2024.140728

    33. [33]

      ZENG Q R, BAO Y N, NING S Y, YU Q G, WEI Y Z, ZENG D Q. Plasmonic Cu-Ni bimetal nanoparticles coupled with ultrathin CdS nanosheets for remarkably improved photocatalytic H2 generation under visible-light irradiation[J]. J. Mater. Chem. A, 2024, 12: 17286-17294  doi: 10.1039/D4TA02353F

    34. [34]

      ZHANG J N, LIU P, JIN C, JIN L N, BIAN S W, ZHU Q, WANG B. Flexible three-dimensional carbon cloth/carbon fibers/NiCo2O4 composite electrode materials for high-performance all-solid-state electrochemical capacitors[J]. Electrochim. Acta, 2017, 256: 90-99  doi: 10.1016/j.electacta.2017.10.005

    35. [35]

      CHOU J A, KAO S H, CHEN T Y, MATHANKUMAR M, WEI S Y, SU C H, LIN J Y, HSIEH C K. Versailles Santa Barbara-5 derived bifunctional one-dimensional electrocatalysts of hierarchical Ni3S2 nanoprism@nanosheets arrays for self-supporting and binder-free efficient supercapacitor and methanol oxidation reaction[J]. J. Alloy. Compd., 2024, 1002: 175257  doi: 10.1016/j.jallcom.2024.175257

    36. [36]

      HAO Y X, KANG Y M, KANG H C, XIN H Y, LIU F Q, LI L F, WANG W, LEI Z Q. Self‑grown layered double hydroxide nanosheets on bimetal-organic frameworks-derived N-doped CoOx carbon polyhedra for flexible all-solid-state rechargeable Zn-air batteries[J]. J. Power Sources, 2022, 524: 231076  doi: 10.1016/j.jpowsour.2022.231076

    37. [37]

      ZHANG Y J, DING J W, GONG C C, CUI J, FU Y Y, CONG H W, HE C N, SHI C S, HE F. Utilizing ion-etching strategy to construct ultra-lightweight CoNi alloy-modified electrospun carbon fiber composites for efficient electromagnetic wave absorption[J]. J. Mater. Sci., 2024, 59: 6746-6764  doi: 10.1007/s10853-024-09553-0

    38. [38]

      LI Z H, HE H Y, CAO H B, SUN S M, DIAO W L, GAO D L, LU P L, ZHANG S S, GUO Z, LI M J, LIU R J, REN D H, LIU C M, ZHANG Y, YANG Z, JIANG J K, ZHANG G J. Atomic Co/Ni dual sites and Co/Ni alloy nanoparticles in N-doped porous Janus-like carbon frameworks for bifunctional oxygen electrocatalysis[J]. Appl. Catal. B‒Environ., 2019, 240: 112-121  doi: 10.1016/j.apcatb.2018.08.074

    39. [39]

      PARK J H, OH Y J, PARK D Y, LEE J, PARK J S, PARK C R, KIM J H, KIM T, YANG S J. A new class of carbon nanostructures for high-performance electro-magnetic and -chemical barriers[J]. Adv. Sci., 2021, 8: 2102718  doi: 10.1002/advs.202102718

    40. [40]

      QIN X, ZHAO K, QUAN X, CAO P K, CHEN S, YU H T. Highly efficient metal-free electro-Fenton degradation of organic contaminants on a bifunctional catalyst[J]. J. Hazard. Mater., 2021, 416: 125859  doi: 10.1016/j.jhazmat.2021.125859

    41. [41]

      WU Z W, YU W Q, PENG Y, DENG Q J, YU M G, WANG Q. Facile fabrication of superhydrophobic and antibacterial dual-functional cotton fabrics for oil-water separation[J]. J. Mater. Sci., 2024, 59: 2558-2570  doi: 10.1007/s10853-024-09350-9

    42. [42]

      YANG C, HAO S J, DAI S L, ZHANG X Y. Nanocomposites of poly(vinylidene fluoride)‑controllable hydroxylated/carboxylated graphene with enhanced dielectric performance for large energy density capacitor[J]. Carbon, 2017, 17: 301-312

    43. [43]

      WU F M, NAN J, WANG T Z, GE Z C, LIU B H, CHEN M, YE X S. Highly selective electrosynthesis of H2O2 by N, O co-doped graphite nanosheets for efficient electro-Fenton degradation of p-nitrophenol[J]. J. Hazard. Mater., 2023, 446: 130733  doi: 10.1016/j.jhazmat.2023.130733

    44. [44]

      VITTAL R, GOMATHI H, KIM K J. Beneficial role of surfactants in electrochemistry and in the modification of electrodes[J]. Adv. Colloid Interface Sci., 2006, 119: 55-68  doi: 10.1016/j.cis.2005.09.004

    45. [45]

      IMAMURA K, WATANABE I, IMADA M, SAKIYAMA T, NAKANISHI K. The kinetics of removal of proteins adsorbed on a stainless steel surface by H2O2-electrolysis and factors affecting its performance[J]. J. Colloid Interf. Sci., 2003, 265: 49-55  doi: 10.1016/S0021-9797(03)00329-1

  • 加载中
    1. [1]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    2. [2]

      Yachao HUANGChuanwang ZENGGuiyong LIUJinming ZENGChao LIUXiaopeng QI . Oxygen vacancies and phosphorus doping enhanced metal-organic framework derived nitrogen-doped carbon-coated Co3O4 bifunctional electrocatalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2251-2260. doi: 10.11862/CJIC.20250133

    3. [3]

      Yichang Liu Li An Dan Qu Zaicheng Sun . “双碳”背景下的综合设计实验——以PbCrO4催化甲基蓝的光降解速率常数测定为例. University Chemistry, 2025, 40(6): 222-229. doi: 10.12461/PKU.DXHX202407105

    4. [4]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    5. [5]

      Ying Chen Ronghua Yan Weiyan Yin . Research Progress on the Synthesis of Metal Single-Atom Catalysts and Their Applications in Electrocatalytic Hydrogen Evolution Reactions. University Chemistry, 2025, 40(9): 344-353. doi: 10.12461/PKU.DXHX202503066

    6. [6]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    7. [7]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    8. [8]

      Shiqian WEIXinyu TIANHong LIUMaoxia CHENFan TANGQiang FANWeifeng FANYu HU . Oxygen reduction reaction/oxygen evolution reaction catalytic performances of different active sites on nitrogen-doped graphene loaded with iron single atoms. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1776-1788. doi: 10.11862/CJIC.20250102

    9. [9]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    10. [10]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    11. [11]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    12. [12]

      Yixuan WangCanhui ZhangXingkun WangJiarui DuanKecheng TongShuixing DaiLei ChuMinghua Huang . Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2305004-0. doi: 10.3866/PKU.WHXB202305004

    13. [13]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    14. [14]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    15. [15]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    16. [16]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    17. [17]

      Xiaofang LiZhigang Wang . 调节金助催化剂的dz2占据轨道增强光催化合成H2O2. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-0. doi: 10.1016/j.actphy.2025.100080

    18. [18]

      Kangjuan ChengChunxiao LiuYoupeng WangQiu JiangTingting ZhengXu LiChuan Xia . Design of noble metal catalysts and reactors for the electrosynthesis of hydrogen peroxide. Acta Physico-Chimica Sinica, 2025, 41(10): 100112-0. doi: 10.1016/j.actphy.2025.100112

    19. [19]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    20. [20]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

Metrics
  • PDF Downloads(0)
  • Abstract views(188)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return