Citation: Zhen FAN, Jiayan WANG, Wenhao ZHU, Xiuchun ZHANG, Yang WANG, Hao LI, Zeyuan WANG, Songzhi ZHENG, Weihai SUN. Fabrication of CsPbBr3 perovskite solar cells using buried polyvinylidene fluorideinterface modification method[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(12): 2464-2478. doi: 10.11862/CJIC.20250191 shu

Fabrication of CsPbBr3 perovskite solar cells using buried polyvinylidene fluorideinterface modification method

  • Corresponding author: Weihai SUN, sunweihai@hqu.edu.cn
  • Received Date: 8 June 2025
    Revised Date: 29 October 2025

Figures(8)

  • Polyvinylidene fluoride (PVDF) was used as the burial interface between the electron transport layer (ETL) and CsPbBr3. Due to the interaction between F contained in PVDF and Pb2+ in CsPbBr3, the interaction between the two provides enough nucleation sites for the growth of PbBr2 crystals, which can improve the morphology of PbBr2 films and promote the reaction between PbBr2 and CsBr, providing a framework for the growth of perovskite films, and ultimately obtain high-quality CsPbBr3 perovskite films. As a result, the device with 1 mg·mL-1 PVDF for buried interface modification could achieve the best champion performance among the CsPbBr3 perovskite solar cells (PSCs). The maximum open-circuit voltage (VOC) reached 1.59 V, the short circuit current density (JSC) was 7.43 mA·cm-2, the fill factor (FF) was 79.69% and the power conversion efficiency (PCE) reached 9.41%. After being exposed to the atmospheric environment for 30 d, the PCE of the device still maintained at 99.4% of the initial value.
  • 加载中
    1. [1]

      SHAO Y C, WANG Q, DONG Q F, YUAN Y B, HUANG J S. Vacuum-free laminated top electrode with conductive tapes for scalable manufacturing of efficient perovskite solar cells[J]. Nano Energy, 2015, 16: 47-53  doi: 10.1016/j.nanoen.2015.06.010

    2. [2]

      SAPAROV B, MITZI D B. Organic-inorganic perovskites: Structural versatility for functional materials design[J]. Chem. Rev., 2016, 116(7): 4558-4596  doi: 10.1021/acs.chemrev.5b00715

    3. [3]

      JEON N J, NOH J H, YANG W S, KIM Y C, RYU S, SEO J, SEOK S I. Compositional engineering of perovskite materials for high-performance solar cells[J]. Nature, 2015, 517(7535): 476-480  doi: 10.1038/nature14133

    4. [4]

      DE WOLF S, HOLOVSKY J, MOON S J, LÖPER P, NIESEN B, LEDINSKY M, HAUG F J, YUM J H, BALLIF C. Organometallic halide perovskites: Sharp optical absorption edge and its relation to photovoltaic performance[J]. J. Phys. Chem. Lett., 2014, 5(6): 1035-1039  doi: 10.1021/jz500279b

    5. [5]

      LIU N M, DUAN J L, ZHANG C L, ZHANG J Y, BI Y Y, MA L Z, XU D M, GAO J, DUAN X X, DOU J, GUO Q Y, HE B L, ZHAO Y Y, TANG Q W. SN2-reaction-bonding-heterointerface strengthens buried adhesion and orientation for advanced perovskite solar cells[J]. Angew. Chem.‒Int. Edit., 2025, 64(15): e202424046  doi: 10.1002/anie.202424046

    6. [6]

      KOJIMA A, TESHIMA K, SHIRAI Y, MIYASAKA T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. J. Am. Chem. Soc., 2009, 131(17): 6050-6051  doi: 10.1021/ja809598r

    7. [7]

      ZHENG Y T, LI Y, ZHUANG R S, WU X Y, TIAN C C, SUN A X, CHEN C, GUO Y S, HUA Y, MENG K, WU K, CHEN C C. Towards 26% efficiency in inverted perovskite solar cells via interfacial flipped band bending and suppressed deep-level traps[J]. Energy Environ. Sci., 2024, 17(3): 1153-1162  doi: 10.1039/D3EE03435F

    8. [8]

      WANG R, MUJAHID M, DUAN Y, WANG Z K, XUE J, YANG Y. A review of perovskites solar cell stability[J]. Adv. Funct. Mater., 2019, 29(47): 1808843  doi: 10.1002/adfm.201808843

    9. [9]

      NIU G D, GUO X D, WANG L D. Review of recent progress in chemical stability of perovskite solar cells[J]. J. Mater. Chem. A, 2015, 3(17): 8970-8980  doi: 10.1039/C4TA04994B

    10. [10]

      SUN S H, HE B L, WANG Z Y, LIU W L, LIU Y, ZHU J W, WEI M, JIAO W J, CHEN H Y, TANG Q W. Integration of SWCNT and WO3 for efficient charge extraction in all-inorganic perovskite solar cells[J]. Chem. Eng. J., 2024, 483: 149425  doi: 10.1016/j.cej.2024.149425

    11. [11]

      LIU X Y, LIU Z Y, TAN X H, YE H B, SUN B, XI S, SHI T L, TANG Z R, LIAO G L. Novel antisolvent-washing strategy for highly efficient carbon-based planar CsPbBr3 perovskite solar cells[J]. J. Power Sources, 2019, 439: 227092  doi: 10.1016/j.jpowsour.2019.227092

    12. [12]

      WANG Q R, ZHU J W, ZHAO Y Y, CHANG Y J, HAO N N, XIN Z, ZHANG Q, CHEN C, HUANG H, TANG Q W. Cross-layer all-interface defect passivation with pre-buried additive toward efficient all-inorganic perovskite solar cells[J]. Carbon Energy, 2024, 6(9): e566  doi: 10.1002/cey2.566

    13. [13]

      XIN Z, DING Y, ZHAO Y Y, PENG Y, ZHANG Q, CAO Y S, GUO Q Y, DUAN J L, DOU J, SUN L Q, ZHANG Q, TANG Q W. Colloidal stabilizer-mediated crystal growth regulation and defect healing for high-quality perovskite solar cells[J]. Adv. Energy Mater., 2025, 15(6): 2403018  doi: 10.1002/aenm.202403018

    14. [14]

      LIU X P, WU J H, GUO Q Y, YANG Y Q, LUO H, LIU Q Z, WANG X B, HE X, HUANG M L, LAN Z. Pyrrole: An additive for improving the efficiency and stability of perovskite solar cells[J]. J. Mater. Chem. A, 2019, 7(19): 11764-11770  doi: 10.1039/C9TA02916H

    15. [15]

      MA Z W, HE B L, TUI R, ZHANG X Y, CHENG Q H, LIU C Q, CHEN H Y, DUAN J L, TANG Q W. Multifunctional molecular bridge enabled interface passivation and strain release for stable and efficient all-inorganic perovskite solar cells[J]. Chem. Eng. J., 2024, 498: 155396  doi: 10.1016/j.cej.2024.155396

    16. [16]

      LIU F H, GENG J D, ZHANG W, DOU J, GUO Q Y, DUAN J L, TANG Q W. A multifunctional phenylphosphinamide additive for stable flexible inverted perovskite solar cells[J]. Chem. Commun., 2024, 60(80): 11335-11338  doi: 10.1039/D4CC03491K

    17. [17]

      ZHOU C C, WANG T, XU J Q, WU J, TANG T W, SHI Q, WANG Y N, PENG L, LIU X L, LIN J, CHEN X F. Regulating molecular stacking to construct a superior interfacial contact for highly efficient and stable perovskite solar cells[J]. Chem. Eng. J., 2023, 472: 144975  doi: 10.1016/j.cej.2023.144975

    18. [18]

      GENG S W, DUAN J L, LIU N M, LI H, ZHU X X, DUAN X X, GUO Q Y, DOU J, HE B L, ZHAO Y Y, TANG Q W. Influence of donor skeleton on intramolecular electron transfer amount for efficient perovskite solar cells[J]. Angew. Chem.‒Int. Edit., 2024, 63(32): e202407383  doi: 10.1002/anie.202407383

    19. [19]

      YANG M J, ZHOU Y Y, ZENG Y N, JIANG C S, PADTURE N P, ZHU K. Square-centimeter solution-processed planar CH3NH3PbI3 perovskite solar cells with efficiency exceeding 15%[J]. Adv. Mater., 2015, 27(41): 6363-6370  doi: 10.1002/adma.201502586

    20. [20]

      CHEN Y, LI B B, HUANG W, GAO D Q, LIANG Z Q. Efficient and reproducible CH3NH3PbI3-x(SCN)x perovskite based planar solar cells[J]. Chem. Commun., 2015, 51(60): 11997-11999  doi: 10.1039/C5CC03615A

    21. [21]

      BRENES R, GUO D Y, OSHEROV A, NOEL N K, EAMES C, HUTTER E M, PATHAK S K, NIROUI F, FRIEND R H, ISLAM M S, SNAITH H J, BULOVIC V, SAVENIJE T J, STRANKS S D. Metal halide perovskite polycrystalline films exhibiting properties of single crystals[J]. Joule, 2017, 1(1): 155-167  doi: 10.1016/j.joule.2017.08.006

    22. [22]

      WANG G Q, DONG W N, GURUNG A, CHEN K, WU F, HE Q Q, PATHAK R, QIAO Q Q. Improving photovoltaic performance of carbon-based CsPbBr3 perovskite solar cells by interfacial engineering using P3HT interlayer[J]. J. Power Sources, 2019, 432: 48-54  doi: 10.1016/j.jpowsour.2019.05.075

    23. [23]

      TAN J, DOU J, DUAN J L, ZHAO Y Y, HE B L, TANG Q W. A trifunctional polyethylene oxide buffer layer for stable and efficient all-inorganic CsPbBr3 perovskite solar cells[J]. Dalton Trans., 2023, 52(13): 4038-4043  doi: 10.1039/D3DT00169E

    24. [24]

      TONG A L, ZHU C W, YAN H Y, ZHANG C H, JIN Y N, WU Y J, CAO F X, WU J H, SUN W H. Defect control for high-efficiency all-inorganic CsPbBr3 perovskite solar cells via hydrophobic polymer interface passivation[J]. J. Alloy. Compd., 2023, 942: 169084  doi: 10.1016/j.jallcom.2023.169084

    25. [25]

      AGHAYARI S. PVDF composite nanofibers applications[J]. Heliyon, 2022, 8(11): e11620  doi: 10.1016/j.heliyon.2022.e11620

    26. [26]

      YANG M L, ZOU L, CHENG J J, WANG J M, JIANG Y F, HAO H Y, XING J, LIU H, FAN Z J, DONG J J. Improvement of performance of CsPbBr3 perovskite solar cells by polyvinylidene fluoride additive[J]. Acta Phys. Sin., 2023, 72(16): 168101

    27. [27]

      ZARENEZHAD H, ASKARI M, HALALI M, SOLATI N, BALKAN T, KAYA S. Enhanced electron transport induced by a ferroelectric field in efficient halide perovskite solar cells[J]. Sol. Energy Mater. Sol. Cells, 2020, 206: 110318  doi: 10.1016/j.solmat.2019.110318

    28. [28]

      ZHENG H Y, LIU G Z, WU W W, XU H F, PAN X. Highly efficient and stable perovskite solar cells with strong hydrophobic barrier via introducing poly(vinylidene fluoride) additive[J]. J. Energy Chem., 2021, 57: 593-600  doi: 10.1016/j.jechem.2020.09.026

    29. [29]

      PAEK S, SCHOUWINK P, ATHANASOPOULOU E N, CHO K T, GRANCINI G, LEE Y, ZHANG Y, STELLACCI F, NAZEERUDDIN M K, GAO P. From nano-to micrometer scale: The role of antisolvent treatment on high performance perovskite solar cells[J]. Chem. Mat., 2017, 29(8): 3490-3498  doi: 10.1021/acs.chemmater.6b05353

    30. [30]

      ZHAO Y Y, WANG Y D, DUAN J L, YANG X Y, TANG Q W. Divalent hard Lewis acid doped CsPbBr3 films for 9.63%-efficiency and ultra-stable all-inorganic perovskite solar cells[J]. J. Mater. Chem. A, 2019, 7(12): 6877-6882  doi: 10.1039/C9TA00761J

    31. [31]

      ZHANG J S, LI J B, DUAN J L, ZHANG X Y, DOU J, GUO Q Y, JIANG C, ZHAO Y Y, HUANG H, TANG Q W. Ionic-rich vermiculite tailoring dynamic bottom-up gradient for high-efficiency perovskite solar cells[J]. Adv. Funct. Mater., 2024, 34(33): 2401662  doi: 10.1002/adfm.202401662

    32. [32]

      DUAN J L, ZHAO Y Y, HE B L, TANG Q W. High-purity inorganic perovskite films for solar cells with 9.72% efficiency[J]. Angew. Chem.‒Int. Edit., 2018, 57(14): 3787-3791  doi: 10.1002/anie.201800019

    33. [33]

      SAIDAMINOV M I, KIM J, JAIN A, QUINTERO-BERMUDEZ R, TAN H, LONG G, TAN F, JOHNSTON A, ZHAO Y, VOZNYY O, SARGENT E H. Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air[J]. Nat. Energy, 2018, 3(8): 648-654  doi: 10.1038/s41560-018-0192-2

    34. [34]

      LIANG K B, WU Y J, ZHEN Q S, ZOU Y, ZHANG X C, WANG C H, SHI P Y, ZHANG Y Y, SUN W H, LI Y L, WU J H. Solvent vapor annealing-assisted mesoporous PbBr2 frameworks for high-performance inorganic CsPbBr3 perovskite solar cells[J]. Surf. Interfaces, 2023, 37: 102707  doi: 10.1016/j.surfin.2023.102707

    35. [35]

      JONES T W, OSHEROV A, ALSARI M, SPONSELLER M, DUCK B C, JUNG Y K, SETTENS C, NIROUI F, BRENES R, STAN C V, LI Y, ABDI-JALEBI M, TAMURA N, MACDONALD J E, BURGHAMMER M, FRIEND R H, BULOVIC V, WALSH A, WILSON G J, LILLIU S, STRANKS S D. Lattice strain causes non-radiative losses in halide perovskites[J]. Energy Environ. Sci., 2019, 12(2): 596-606  doi: 10.1039/C8EE02751J

    36. [36]

      FU S, ZHANG W X, LI X D, WAN L, WU Y L, CHEN L J, LIU X H, FANG J F. Dual-protection strategy for high-efficiency and stable CsPbI2Br inorganic perovskite solar cells[J]. ACS Energy Lett., 2020, 5(2): 676-684  doi: 10.1021/acsenergylett.9b02716

    37. [37]

      WU Y L, WAN L, FU S, ZHANG W X, LI X D, FANG J F. Liquid metal acetate assisted preparation of high-efficiency and stable inverted perovskite solar cells[J]. J. Mater. Chem. A, 2019, 7(23): 14136-14144  doi: 10.1039/C9TA04192C

    38. [38]

      LIU C Q, CHEN H Y, HE B L, BAO F L, CHENG Q H, YANG Z, WEI M, MA Z W, DUAN J L, TANG Q W. Influence of p-π conjugation in π-π stacking molecules on passivating defects for efficient and stable perovskite solar cells[J]. J. Energy Chem., 2025, 102: 282-289  doi: 10.1016/j.jechem.2024.11.009

    39. [39]

      SHIH Y C, LAN Y B, LI C S, HSIEH H C, WANG L, WU C I, LIN K F. Amino-acid-induced preferential orientation of perovskite crystals for enhancing interfacial charge transfer and photovoltaic performance[J]. Small, 2017, 13(22): 1604305  doi: 10.1002/smll.201604305

    40. [40]

      MA S P, LIN F Y, LUO Y, ZHU L, GUO X Y, YANG Y. Formation mechanism of CsPbBr3 in multi-step spin-coating process[J]. Acta Phys. Sin., 2022, 71(15): 158101

    41. [41]

      FU S, LI X D, WAN L, ZHANG W X, SONG W J, FANG J F. Effective surface treatment for high-performance inverted CsPbI2Br perovskite solar cells with efficiency of 15.92%[J]. Nano-Micro Lett., 2020, 12(1): 170  doi: 10.1007/s40820-020-00509-y

    42. [42]

      LI H, DUAN J L, LIU N M, MA L Z, DOU J, ZHANG X Y, GUO Q Y, ZHAO Y Y, HE B L, TANG Q W. Effective n-type de-doping of perovskite surface via defect passivation and improved film crystallization for high-efficiency inorganic solar cells[J]. J. Mater. Chem. A, 2024, 12(34): 23067-23075  doi: 10.1039/D4TA03811H

    43. [43]

      URBACH F. The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids[J]. Phys. Rev., 1953, 92(5): 1324-1324

    44. [44]

      JIAO W J, HE B L, SUN S H, WEI M, LIU W L, SUN M R, CHEN H Y, LI H Y, DUAN J L, TANG Q W. Reducing oxygen vacancies of MoO3 by polyaniline functionalization for stable and efficient inorganic tri-brominated perovskite solar cells[J]. Mater. Today Phys., 2024, 46: 101514  doi: 10.1016/j.mtphys.2024.101514

    45. [45]

      KULBAK M, CAHEN D, HODES G. How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells[J]. J. Phys. Chem. Lett., 2015, 6(13): 2452-2456  doi: 10.1021/acs.jpclett.5b00968

    46. [46]

      WANG S B, CAO F X, SUN W H, WANG C Y, YAN Z L, WANG N, LAN Z, WU J H. A green Bi-solvent system for processing high-quality CsPbBr3 films in efficient all-inorganic perovskite solar cells[J]. Mater. Today Phys., 2022, 22: 100614  doi: 10.1016/j.mtphys.2022.100614

    47. [47]

      ZHAO Y Y, GAO L, WANG Q R, ZHANG Q, YANG X Y, ZHU J W, HUANG H, DUAN J L, TANG Q W. Reinforced SnO2 tensile-strength and "buffer-spring" interfaces for efficient inorganic perovskite solar cells[J]. Carbon Energy, 2024, 6(6): e468  doi: 10.1002/cey2.468

    48. [48]

      XIN Z, ZHAO Y Y, BIAN L Q, CAO Y S, DUAN J L, GUO Q Y, DOU J, ZHANG Q, TANG Q W. Achieving precise control of defect states and residual strain in perovskite solar cells using π-conjugated dual-anchor molecules[J]. ACS Mater. Lett., 2024, 6(8): 3327-3334  doi: 10.1021/acsmaterialslett.4c00874

    49. [49]

      LUO P F, ZHOU Y G, ZHOU S W, LU Y W, XU C X, XIA W, SUN L. Fast anion-exchange from CsPbI3 to CsPbBr3 via Br2-vapor-assisted deposition for air-stable all-inorganic perovskite solar cells[J]. Chem. Eng. J., 2018, 343: 146-154  doi: 10.1016/j.cej.2018.03.009

    50. [50]

      DING J, DUAN J L, GUO C Y, TANG Q W. Toward charge extraction in all-inorganic perovskite solar cells by interfacial engineering[J]. J. Mater. Chem. A, 2018, 6(44): 21999-22004  doi: 10.1039/C8TA02522C

    51. [51]

      DUAN X X, DUAN J L, LIU N M, LI J B, DOU J, ZHANG X Y, GUO Q Y, WANG Y L, WANG Z, ZHAO Y Y, JIANG C, LI J Z, TANG Q W. Inhibited superoxide-induced halide oxidation with a bioactive factor for stabilized inorganic perovskite solar cells[J]. SusMat, 2024, 4(4): e233  doi: 10.1002/sus2.233

    52. [52]

      LUO D Y, SU R, ZHANG W, GONG Q H, ZHU R. Minimizing non-radiative recombination losses in perovskite solar cells[J]. Nat. Rev. Mater., 2020, 5(1): 44-60

    53. [53]

      JIANG S, WU C C, LI F, ZHANG Y Q, ZHANG Z H, ZHANG Q H, CHEN Z J, QU B, XIAO L X, JIANG M L. Machine learning (ML)-assisted optimization doping of KI in MAPbI3 solar cells[J]. Rare Metals, 2021, 40(7): 1698-1707

    54. [54]

      LUO Y X, CHEN J D, HOU H Y, YE Y C, SHEN K C, LU L Y, LI Y Q, SONG F, GAO X Y, TANG J X. Hierarchically manipulated charge recombination for mitigating energy loss in CsPbI2Br solar cells[J]. ACS Appl. Mater. Interfaces, 2020, 12(37): 41596-41604

    55. [55]

      BIAN L Q, JIA Y, ZHAO Y Y, DOU Z, GUO Q Y, DUAN J L, DOU J, SUN L Q, ZHANG Q, TANG Q W. Target therapy at buried interfaces toward efficient and stable inorganic perovskite solar cells[J]. Chem. Eng. J., 2024, 496: 154189

    56. [56]

      ZHANG W N, ZHANG X Z, WU T Y, SUN W H, WU J H, LAN Z. Interface engineering with NiO nanocrystals for highly efficient and stable planar perovskite solar cells[J]. Electrochim. Acta, 2019, 293: 211-219

    57. [57]

      ZHOU S J, TANG R, YIN L W. Slow-photon-effect-induced photoelectrical-conversion efficiency enhancement for carbon-quantum-dot-sensitized inorganic CsPbBr3 inverse opal perovskite solar[J]. Adv. Mater., 2017, 29(43): 1703682

    58. [58]

      LIU N M, DUAN J L, LI H, MA L Z, WANG B, LI J B, DUAN X X, GUO Q Y, DOU J, GENG S W, LIU Y, ZHANG C L, LIU Y J, HE B L, YANG X Y, TANG Q W. Columnar macrocyclic molecule tailored grain cage to stabilize inorganic perovskite solar cells with suppressed halide segregation[J]. Adv. Energy Mater., 2024, 14(48): 2402443

    59. [59]

      YANG G, WANG C L, LEI H W, ZHENG X L, QIN P L, XIONG L B, ZHAO X Z, YAN Y F, FANG G J. Interface engineering in planar perovskite solar cells: energy level alignment, perovskite morphology control and high performance achievement[J]. J. Mater. Chem. A, 2017, 5(4): 1658-1666

    60. [60]

      LI H, DUAN J L, ZHANG C L, LIU N M, MA L Z, DUAN X X, DOU J, GUO Q Y, HE B L, ZHAO Y Y, TANG Q W. Idealizing air-processed perovskite film competitive by surface lattice etching-reconstruction for high-efficiency solar cells[J]. Angew. Chem.‒Int. Edit., 2025, 64(7): e202419061

    61. [61]

      GUO Q Y, DOU J, MEI Y H, PENG Y, LIU F H, LIU Y J, CHEN Q, ZHAO Y Y, WANG Y L, ZHANG X Y, DUAN J L, TANG Q W. Toward α-phase stabilization of formamidinium lead iodide perovskites with dual-trivalent metal regulation[J]. Chem. Eng. J., 2025, 504: 158875

  • 加载中
    1. [1]

      Zongsheng LIYichao WANGYujie WANGWenhao ZHUXiaoyao YINWudan YANGSongzhi ZHENGWeihai SUN . Preparation of CsPbBr3 perovskite solar cells via bottom interface modification with methylammonium chloride. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1805-1816. doi: 10.11862/CJIC.20250066

    2. [2]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    3. [3]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    4. [4]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    5. [5]

      Husitu LinShuangkun ZhangDianfa ZhaoYongkang WangWei LiuFan YangJianjun LiuDongpeng YanZhanpeng Wu . Flexible polyphosphazene nanocomposite films: Enhancing stability and luminescence of CsPbBr3 perovskite nanocrystals. Chinese Chemical Letters, 2025, 36(4): 109795-. doi: 10.1016/j.cclet.2024.109795

    6. [6]

      Sheng TangMingyue LiaoWeihai SunJihuai WuJiamin LuYiming Xie . Optimizing CsPbBr3 perovskite solar cell interface and performance through tetraphenylethene derivatives. Chinese Chemical Letters, 2025, 36(6): 110838-. doi: 10.1016/j.cclet.2025.110838

    7. [7]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    8. [8]

      Xiaoyi Sun Duohang Bi Hankun Qiao Yijing Liu Jintao Zhu . Painless Injection: Microneedles Revolutionizing Beauty and Health Brought. University Chemistry, 2025, 40(10): 166-174. doi: 10.12461/PKU.DXHX202411006

    9. [9]

      Pengyu DongYue JiangZhengchi YangLicheng LiuGu LiXinyang WenZhen WangXinbo ShiGuofu ZhouJun-Ming LiuJinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 100029-0. doi: 10.3866/PKU.WHXB202407025

    10. [10]

      Ying LiangYuheng DengShilv YuJiahao ChengJiawei SongJun YaoYichen YangWanlei ZhangWenjing ZhouXin ZhangWenjian ShenGuijie LiangBin LiYong PengRun HuWangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098

    11. [11]

      Jizhou LiuChenbin AiChenrui HuBei ChengJianjun Zhang . Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-0. doi: 10.3866/PKU.WHXB202402006

    12. [12]

      Binbin LiuYang ChenTianci JiaChen ChenZhanghao WuYuhui LiuYuhang ZhaiTianshu MaChanglei Wang . Hydroxyl-functionalized molecular engineering mitigates 2D phase barriers for efficient wide-bandgap and all-perovskite tandem solar cells. Acta Physico-Chimica Sinica, 2026, 42(1): 100128-0. doi: 10.1016/j.actphy.2025.100128

    13. [13]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    14. [14]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 100027-0. doi: 10.3866/PKU.WHXB202406007

    15. [15]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    16. [16]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    17. [17]

      Mingxuan QiLanyu JinHonghe YaoZipeng XuTeng ChengQi ChenCheng ZhuYang Bai . Recent progress on electrical failure and stability of perovskite solar cells under reverse bias. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-0. doi: 10.1016/j.actphy.2025.100088

    18. [18]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    19. [19]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    20. [20]

      Yuxia Luo Xiaoyu Xie Fangfang Chen . 药物递送魔法师——分子印迹聚合物. University Chemistry, 2025, 40(8): 202-210. doi: 10.12461/PKU.DXHX202409129

Metrics
  • PDF Downloads(1)
  • Abstract views(121)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return