Citation: Yongxin LIU, Xingchen LI, Hongjia LIU, Danni LI, Tao ZHANG, Xi CHEN. Enhancement effect of Fe3O4 conversion to MIL-100(Fe) on activation of persulfate for degradation of antibiotic[J]. Chinese Journal of Inorganic Chemistry, ;2025, 41(12): 2503-2513. doi: 10.11862/CJIC.20250169 shu

Enhancement effect of Fe3O4 conversion to MIL-100(Fe) on activation of persulfate for degradation of antibiotic

  • Corresponding author: Xi CHEN, chenxi731@foxmail.com
  • Received Date: 23 May 2025
    Revised Date: 17 October 2025

Figures(9)

  • A core-shell structured Fe3O4@MIL-100(Fe) composite was synthesized via a solid-phase conversion method, in which the surface of Fe3O4 nanoparticles was partially transformed into the photocatalytically active iron-based metal-organic framework MIL-100(Fe). The photoinduced electrons from MIL-100(Fe) promote the rapid conversion of Fe3+ to Fe2+ in Fe3O4, while the high specific surface area of MIL-100(Fe) enhances the adsorption capacity of the composite toward antibiotic molecules. By controlling the extent of conversion from Fe3O4 to MIL-100(Fe), the synergistic effect between the two was optimized, leading to enhanced performance in the photocatalytic activation of persulfate for antibiotic degradation. The optimal Fe3O4@MIL-100(Fe) composite exhibited a high specific surface area of 406 m2·g-1, achieved a degradation efficiency of 83.0% within 50 min under photocatalytic conditions, and demonstrated high stability over five consecutive recycling tests.
  • 加载中
    1. [1]

      GAO Y, WANG Q, JI G Z, LI A. Degradation of antibiotic pollutants by persulfate activated with various carbon materials[J]. Chem. Eng. J., 2022,429132387. doi: 10.1016/j.cej.2021.132387

    2. [2]

      LIU X, STEELE J C, MENG X Z. Usage, residue, and human health risk of antibiotics in Chinese aquaculture: A review[J]. Environ. Pollut., 2017,223:161-169. doi: 10.1016/j.envpol.2017.01.003

    3. [3]

      ZAINAB S M, JUNAID M, XU N, MALIK R N. Antibiotics and antibiotic resistant genes (ARGs) in groundwater: A global review on dissemination, sources, interactions, environmental and human health risks[J]. Water Res., 2020,187116455. doi: 10.1016/j.watres.2020.116455

    4. [4]

      PONNUSAMI A B, SINHA S, ASHOKAN H, PAUL M V, HARIHARAN S P, ARUN J, GOPINATH K P, LE Q H, PUGAZHENDHI A. Advanced oxidation process (AOP) combined biological process for wastewater treatment: A review on advancements, feasibility and practicability of combined techniques[J]. Environ. Res., 2023,237116944. doi: 10.1016/j.envres.2023.116944

    5. [5]

      YI X H, WANG C C. Elimination of emerging organic contaminants in wastewater by advanced oxidation process over iron-based MOFs and their composites[J]. Prog. Chem., 2021,33:471-489.

    6. [6]

      ZHANG X Y, WEN J L, HU Y Y. Research progress on persulfate advanced oxidation degradation of bisphenol A[J]. Technology of Water Treatment, 2025,51:14-21.

    7. [7]

      JIANG D N, FANG D, ZHOU Y, WANG Z W, YANG Z H, ZHU J, LIU Z M. Strategies for improving the catalytic activity of metal-organic frameworks and derivatives in SR-AOPs: Facing emerging environmental pollutants[J]. Environ. Pollut., 2022,306119386. doi: 10.1016/j.envpol.2022.119386

    8. [8]

      SCARIA J, NIDHEESH P V. Comparison of hydroxyl-radical-based advanced oxidation processes with sulfate radical-based advanced oxidation processes[J]. Curr. Opin. Chem. Eng., 2022,36100830. doi: 10.1016/j.coche.2022.100830

    9. [9]

      DU X D, ZHOU M H. Strategies to enhance catalytic performance of metal-organic frameworks in sulfate radical-based advanced oxidation processes for organic pollutants removal[J]. Chem. Eng. J., 2021,403126346. doi: 10.1016/j.cej.2020.126346

    10. [10]

      ANIPSITAKIS G P, DIONYSIOU D D. Radical generation by the interaction of transition metals with common oxidants[J]. Environ. Sci. Technol., 2004,38:3705-3712. doi: 10.1021/es035121o

    11. [11]

      GUAN K, ZHOU P J, ZHANG J Y, ZHU L L. Catalytic degradation of acid orange 7 in water by persulfate activated with CuFe2O4@ RSDBC[J]. Mater. Res. Express, 2020,7016529. doi: 10.1088/2053-1591/ab6253

    12. [12]

      LENG Y Q, GUO W L, SHI X, LI Y Y, WANG A Q, HAO F F, XING L T. Degradation of rhodamine B by persulfate activated with Fe3O4: Effect of polyhydroquinone serving as an electron shuttle[J]. Chem. Eng. J., 2014,240:338-343. doi: 10.1016/j.cej.2013.11.090

    13. [13]

      ZHAO Y S, SUN C, SUN J Q, ZHOU R. Kinetic modeling and efficiency of sulfate radical-based oxidation to remove p-nitroaniline from wastewater by persulfate/Fe3O4 nanoparticles process[J]. Sep. Purif. Technol., 2015,142:182-188. doi: 10.1016/j.seppur.2014.12.035

    14. [14]

      YAN J C, LEI M, ZHU L H, ANJUM M N, ZOU J, TANG H Q. Degradation of sulfamonomethoxine with Fe3O4 magnetic nanoparticles as heterogeneous activator of persulfate[J]. J. Hazard. Mater., 2011,186:1398-1404. doi: 10.1016/j.jhazmat.2010.12.017

    15. [15]

      LIU Z M, LI X, RAO Z W, HU F P. Treatment of landfill leachate biochemical effluent using the nano-Fe3O4/Na2S2O8 system: Oxidation performance, wastewater spectral analysis, and activator characterization[J]. J. Environ. Manage., 2018,208:159-168. doi: 10.1016/j.jenvman.2017.12.023

    16. [16]

      SUN C, ZHOU R, JIANAN E, SUN J Q, SU Y Q, REN H J. Ascorbic acid-coated Fe3O4 nanoparticles as a novel heterogeneous catalyst of persulfate for improving the degradation of 2, 4-dichlorophenol[J]. RSC Adv., 2016,6:10633-10640. doi: 10.1039/C5RA22491H

    17. [17]

      TAN C Q, LU X, CUI X X, JIAN X C, HU Z X, DONG Y J, LIU X Y, HUANG J, DENG L. Novel activation of peroxymonosulfate by an easily recyclable VC@Fe3O4 nanoparticles for enhanced degradation of sulfadiazine[J]. Chem. Eng. J., 2019,363:318-328. doi: 10.1016/j.cej.2019.01.145

    18. [18]

      LI J, WAN Y J, LI Y J, YAO G, LAI B. Surface Fe(Ⅲ)/Fe(Ⅱ) cycle promoted the degradation of atrazine by peroxymonosulfate activation in the presence of hydroxylamine[J]. Appl. Catal. B-Environ., 2019,256117782. doi: 10.1016/j.apcatb.2019.117782

    19. [19]

      ZHANG J, CHEN M Y, ZHU L. Activation of peroxymonosulfate by iron-based catalysts for orange G degradation: Role of hydroxylamine[J]. RSC Adv., 2016,6:47562-47569. doi: 10.1039/C6RA07231C

    20. [20]

      TAN C Q, JIAN X C, DONG Y J, LU X, LIU X Y, XIANG H M, CUI X X, DENG J, GAO H Y. Activation of peroxymonosulfate by a novel EGCE@Fe3O4 nanocomposite: Free radical reactions and implication for the degradation of sulfadiazine[J]. Chem. Eng. J., 2019,359:594-603. doi: 10.1016/j.cej.2018.11.178

    21. [21]

      YI Q H, BU L J, SHI Z, ZHOU S Q. Epigallocatechin-3-gallate-coated Fe3O4 as a novel heterogeneous catalyst of peroxymonosulfate for diuron degradation: Performance and mechanism[J]. Chem. Eng. J., 2016,302:417-425. doi: 10.1016/j.cej.2016.05.025

    22. [22]

      DONG Y J, CUI X X, LU X, JIAN X C, XU Q L, TAN C Q. Enhanced degradation of sulfadiazine by novel β-alaninediacetic acid-modified Fe3O4 nanocomposite coupled with peroxymonosulfate[J]. Sci. Total Environ., 2019,662:490-500. doi: 10.1016/j.scitotenv.2019.01.280

    23. [23]

      CHEN C, FEI L Y, WANG B Y, XU J J, LI B S, SHEN L G, LIN H J. MOF-based photocatalytic membrane for water purification: A review[J]. Small, 2024,202305066. doi: 10.1002/smll.202305066

    24. [24]

      SUTHERLAND C. Exploring the state-of-the-art in metal-organic frameworks for antibiotic adsorption: A review of performance, mechanisms, and regeneration[J]. Environ. Toxicol. Chem., 2025,44:880-894. doi: 10.1093/etojnl/vgaf009

    25. [25]

      AN H T, HAN Z Y, LU M Y, ZHOU A W, LI J R. Promoting industrial application of MOF: scale-up preparation and shaping[J]. CIESC Journal, 2025,76:2011-2025.

    26. [26]

      WANG Q, GAO Q Y, AL-ENIZI A M, NAFADY A, MA S Q. Recent advances in MOF-based photocatalysis: Environmental remediation under visible light[J]. Inorg. Chem. Front., 2020,7:300-339. doi: 10.1039/C9QI01120J

    27. [27]

      KHAN M S, LI Y X, LI D S, QIU J B, XU X H, YANG H Y. A review of metal-organic framework (MOF) materials as an effective photocatalyst for degradation of organic pollutants[J]. Nanoscale Adv., 2023,5:6318-6348. doi: 10.1039/D3NA00627A

    28. [28]

      XIONG Z K, JIANG Y N, WU Z L, YAO G, LAI B. Synthesis strategies and emerging mechanisms of metal-organic frameworks for sulfate radical-based advanced oxidation process: A review[J]. Chem. Eng. J., 2021,421127863. doi: 10.1016/j.cej.2020.127863

    29. [29]

      FANG Y, YANG Y, YANG Z G, LI H P, ROESKY H W. Advances in design of metal-organic frameworks activating persulfate for water decontamination[J]. J. Organomet. Chem., 2021,954-955122070.

    30. [30]

      KHAN S, GUAN Q, LIU Q, QIN Z W, RASHEED B, LIANG X X, YANG X. Synthesis, modifications and applications of MILs metal-organic frameworks for environmental remediation: The cutting-edge review[J]. Sci. Total Environ., 2022,810152279. doi: 10.1016/j.scitotenv.2021.152279

    31. [31]

      ZHANG Y, ZHOU J B, CHEN X, WANG L, CAI W Q. Coupling of heterogeneous advanced oxidation processes and photocatalysis in efficient degradation of tetracycline hydrochloride by Fe‑based MOFs: Synergistic effect and degradation pathway[J]. Chem. Eng. J., 2019,369:745-757. doi: 10.1016/j.cej.2019.03.108

    32. [32]

      CHEN D D, YI X H, LING L, WANG C C, WANG P. Photocatalytic Cr􀃱 sequestration and photo-Fenton bisphenol A decomposition over white light responsive PANI/MIL-88A(Fe)[J]. Appl. Organomet. Chem., 2020,34e5795. doi: 10.1002/aoc.5795

    33. [33]

      WANG J W, QIU F G, WANG P, GE C J, WANG C C. Boosted bisphenol A and Cr􀃱 cleanup over Z-scheme WO3/MIL-100(Fe) composites under visible light[J]. J. Clean. Prod., 2021,279123408. doi: 10.1016/j.jclepro.2020.123408

    34. [34]

      YANG J L, ZHU M S, DIONYSIOU D D. What is the role of light in persulfate-based advanced oxidation for water treatment?[J]. Water Res., 2021,189116627. doi: 10.1016/j.watres.2020.116627

    35. [35]

      DU C Y, ZHANG Y, ZHANG Z, ZHOU L, YU G L, WEN X F, CHI T Y, WANG G L, SU Y H, DENG F F, LV Y C, ZHU H. Fe-based metal organic frameworks (Fe-MOFs) for organic pollutants removal via photo-Fenton: A review[J]. Chem. Eng. J., 2022,431133932. doi: 10.1016/j.cej.2021.133932

    36. [36]

      DENG H, LI X L, PENG Q, WANG X, CHEN J P, LI Y D. Monodisperse magnetic single-crystal ferrite microspheres[J]. Angew. Chem. ‒Int. Edit., 2005,44:2782-2785. doi: 10.1002/anie.200462551

    37. [37]

      CHEN X, ZHANG Y S, ZHAO Y H, WANG S, LIU L Z, XU W Y, GUO Z R, WANG S H, LIU Y X, ZHANG J L. Encapsulating Pt nanoparticles through transforming Fe3O4 into MIL-100(Fe) for well-defined Fe3O4@Pt@MIL-100(Fe) core-shell heterostructures with promoting catalytic activity[J]. Inorg. Chem., 2019,58:12433-12440. doi: 10.1021/acs.inorgchem.9b02114

    38. [38]

      CHEN X, ZHANG Y S, KONG X Y, YAO K, LIU L Z, ZHANG J L, GUO Z R, XU W Y, FANG Z L, LIU Y X. Photocatalytic performance of the MOF-coating layer on SPR-excited Ag nanowires[J]. ACS Omega, 2021,6:2882-2889. doi: 10.1021/acsomega.0c05229

    39. [39]

      XIAO J D, SHANG Q C, XIONG Y J, ZHANG Q, LUO Y, YU S H, JIANG H L. Boosting photocatalytic hydrogen production of a metal-organic framework decorated with platinum nanoparticles: The platinum location matters[J]. Angew. Chem. ‒Int. Edit., 2016,55:9389-9393. doi: 10.1002/anie.201603990

    40. [40]

      ZHANG Q C, JIANG L, WANG J, ZHU Y F, PU Y J, DAI W D. Photocatalytic degradation of tetracycline antibiotics using three- dimensional network structure perylene diimide supramolecular organic photocatalyst under visible-light irradiation[J]. Appl. Catal. B‒Envrion., 2020,277119122. doi: 10.1016/j.apcatb.2020.119122

    41. [41]

      ZHANG X W, WANG F, WANG C C, WANG P, FU H F, ZHAO C. Photocatalysis activation of peroxodisulfate over the supported Fe3O4 catalyst derived from MIL-88A(Fe) for efficient tetracycline hydrochloride degradation[J]. Chem. Eng. J., 2021,426131927. doi: 10.1016/j.cej.2021.131927

    42. [42]

      HE W J, LI Z P, LV S C, NIU M X, ZHOU W F, LI J, LU R H, GAO H X, PAN C P, ZHANG S B. Facile synthesis of Fe3O4@MIL-100(Fe) towards enhancing photo-Fenton like degradation of levofloxacin via a synergistic effect between Fe3O4 and MIL-100(Fe)[J]. Chem. Eng. J., 2021,409128274.

  • 加载中
    1. [1]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    2. [2]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    3. [3]

      Ran YuChen HuRuili GuoRuonan LiuLixing XiaCenyu YangJianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032

    4. [4]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    5. [5]

      Qinwen ZhengXin LiuLintao TianYi ZhouLibing LiaoGuocheng Lv . Mechanism of Fenton catalytic degradation of Rhodamine B induced by microwave and Fe3O4. Chinese Chemical Letters, 2025, 36(4): 109771-. doi: 10.1016/j.cclet.2024.109771

    6. [6]

      Jijun Sun Qianlang Wang Qian Chen Quanqin Zhao Shumei Zhai . The Antibiotic Legion’s Manifesto to Human Allies. University Chemistry, 2025, 40(4): 307-321. doi: 10.12461/PKU.DXHX202405206

    7. [7]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    8. [8]

      Wenjuan SHIYuke LUXiuyuan LILei HOUYaoyu WANG . Mg(Ⅱ) metal-organic frameworks based on biphenyltetracarboxylic acid: Synthesis and CO2 adsorption and catalytic conversion performance. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2455-2463. doi: 10.11862/CJIC.20250220

    9. [9]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    10. [10]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    11. [11]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 100028-0. doi: 10.3866/PKU.WHXB202406009

    12. [12]

      Peiling Li Qing Feng Hongling Yuan Qin Wang . Live Interview Recording about the Penicillin Family. University Chemistry, 2024, 39(9): 122-127. doi: 10.3866/PKU.DXHX202311022

    13. [13]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    14. [14]

      Ziheng Zhuang Xiao Xu Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040

    15. [15]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    16. [16]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    17. [17]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    18. [18]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

    19. [19]

      Deyun MaFenglan LiangQingquan XueYanping LiuChunqiang ZhuangShijie Li . Interfacial engineering of Cd0.5Zn0.5S/BiOBr S-scheme heterojunction with oxygen vacancies for effective photocatalytic antibiotic removal. Acta Physico-Chimica Sinica, 2025, 41(12): 100190-0. doi: 10.1016/j.actphy.2025.100190

    20. [20]

      Chao LiuHuan YuJiaming LiXi YuZhuangzhi YuYuxi SongFeng ZhangQinfang ZhangZhigang Zou . 具有光热效应的多级Ti3C2/Bi12O17Br2肖特基异质结简单合成及其太阳能驱动抗生素光降解的研究. Acta Physico-Chimica Sinica, 2025, 41(7): 100075-0. doi: 10.1016/j.actphy.2025.100075

Metrics
  • PDF Downloads(2)
  • Abstract views(143)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return