-
-
无机化学学报
Chinese Journal of Inorganic Chemistry
主管 : 中国科学技术协会
刊期 : 月刊主编 : 游效曾
语种 : 中文主办 : 中国化学会
ISSN : 1001-4861 CN : 32-1185/O6展开 >《无机化学学报》由中国化学会主办,是展示我国无机化学研究成果的学术性期刊,月刊。1985年由化学前辈戴安邦院士(发起)创刊,现任主编游效曾院士。编辑部设在南京大学化学化工学院化学楼。报道我国无机化学领域的基础研究和应用基础研究的创新成果,内容涉及固体无机化学、配位化学、无机材料化学、生物无机化学、有机金属化学、理论无机化学、超分子化学和应用无机化学、催化等,着重报道新的和已知化合物的合成、热力学、动力学性质、谱学、结构和成键等。设有综述、研究快报及论文等栏目。
本刊所刊论文均为美国《科学引文索引》(SCI)网络版、美国《化学文摘》(CA)、《中国学术期刊文摘》(中、英文版)、《中国科技论文与引文数据库(CSTPCD)》、《中国科学引文数据库》、《中文科技期刊数据库》、《中国期刊全文数据库》、《中国核心期刊(遴选)数据库》、中国台湾华艺《中文电子期刊服务》等国内外多种著名检索刊物和文献数据库摘引和收录。
《无机化学学报》2011年每期200页,定价28.00元、全年定价336.00元。本刊由各地邮局征订,邮发代号28-133。也可直接向编辑部订阅。
- 影响因子: 0.8
期刊内检索
期刊内热点文章
An efficient interlocking process was developed, including acid leaching, co-precipitation, and heat treatment, to regenerate waste LiNi0.5Co0.2Mn0.3O2 (NCM523) materials. DL-tartaric acid and formic acid were used as leaching systems, and the leaching efficiencies of Li, Ni, Co, and Mn reached about 98%. The leaching solution was added to the oxalic acid solution for a co-precipitation reaction, and then the regeneration of the material was realized through heat treatment. The regenerated NCM523 material exhibited an excellent layered structure and uniform elemental distribution. When employed as a cathode material for LIBs, the regenerated NCM523 exhibited a discharge-specific capacity of 168.5 mAh·g-1 at 0.1C (18 mA·g-1), which is comparable to the performance of fresh NCM523. Furthermore, the regenerated NCM523 demonstrated a capacity retention of 93.09% after 100 cycles at 0.5C.
In this study, ZnSnO3/NiO heterostructures were synthesized using a co-precipitation method followed by an annealing process. The gas-sensitive characteristics of the sensors based on these samples were evaluated. The results indicate that the sensor performance was optimized when the molar ratio of Ni to Zn was 1∶2. Specifically, the response values of the ZnSnO3/NiO-2-based sensor to 100 μL·L-1 triethylamine (TEA) gas at 220 ℃ reached 70.6, which were 6.1 times higher than that of the pure ZnSnO3 based sensor. The findings demonstrate that ZnSnO3/NiO heterostructures exhibited not only short response and recovery times (1 s/18 s) but also good gas selectivity, repeatability, and long-term stability. The enhanced sensing mechanism has been investigated in detail.
The Z-scheme heterojunction Cu2O/Bi2CrO6 photocatalyst was successfully prepared by introducing Cu2O on the Bi2CrO6 surface using a coprecipitation method. The photocatalytic degradation of tetracycline (TC) on Cu2O/Bi2CrO6 under visible light irradiation was investigated. It was found that the Cu2O/Bi2CrO6 photocatalyst had the best photocatalytic activity when the mass ratio of Cu2O to Bi2CrO6 was 20%, and the TC could be degraded by 87.5% within 100 min, which was about 1.8 times and 1.3 times higher than that of pure Bi2CrO6 and pure Cu2O, respectively. Besides, the Cu2O/Bi2CrO6 photocatalyst also showed good stability and reusability. The Z scheme heterojunction structure of Cu2O/Bi2CrO6 provided increased active sites, enhanced interfacial charge separation, and improved separation efficiency of photogenerated electro-hole (e--h+) pairs, leading to enhanced photocatalytic properties. Electron paramagnetic resonance (EPR) measurement confirmed that the superoxide radical (·O2-), hydroxyl radical (·OH), and h+ were the primary active species during photocatalysis.
A Zn(Ⅱ)-based coordination polymer (CP), {[Zn2(bdc)2(mfdp)]2·4DMA·2Me2NH·3H2O}n (1), was synthesized by solvothermal method based on H2bdc and mfdp, where H2bdc=1, 4-benzenedicarboxylic acid, mfdp=2, 7-bis (4-pyridyl)-9, 9-dimethylfluorene, and DMA=N, N-dimethylacetamide. It was characterized by FTIR, elemental analysis, TGA, and single-crystal X-ray diffraction. In 1, two adjacent zinc ions lie in the same {ZnNO4} geometrical configurations, forming a paddle-wheel building block. Complex 1 displays 2-fold interpenetrating frameworks with {412· 63} topology and with the emission peak situated at 385 nm, which offers a good foundation to be integrated as a chemical sensor. The fluorescence sensing experiments showed that the LOD (limit of detection) of 2, 4, 6-trinitrophenol (TNP) was 0.164 μmol·L-1, and the quenching constant (KSV) was 6.65×104 L·mol-1, indicating the excellent detection ability of trace analytes in DMA.
Two new binuclear Gd2 complexes with the molecular formula [Gd2(L)(H2L)]·2CH3OH·CH3CN (1) and [Gd2(H2L)2(dbm)2]·6CH3CN (2) (Hdbm=dibenzoylmethane) have been obtained by using a large conjugated diacylhydrazone organic ligand N′, N‴-(1E, 1′E)-(1, 10-phenanthroline-2, 9-diyl)bis(methaneylylidene) bis (2-hydroxy-benzohydrazide) (H4L) reacting with Gd(NO3)3·6H2O or Gd(dbm)3·2H2O. Structure studies reveal that Gd2 complexes 1 and 2 belong to a triclinic crystal system with space group P1. Nevertheless, they show different molecule structures. 1 displays a cattail leaf fan shape, while 2 displays a pinwheel-shaped cage. Magnetic properties researches suggest that the two Gd2 complexes displayed different magnetic refrigeration (-ΔSm=23.35 and 15.09 J·kg-1·K-1 for 1 and 2, respectively). In addition, the synergistic interaction between ligand and Ln(Ⅲ) ions, promotes the two Gd2 complexes showing excellent antibacterial activity. When the Gd2 complexes interact with DNA, the Gd2 complexes mainly insert or cut DNA.
A novel porous silicon composite material (pSi/Ge@Gr/CNTs) was successfully fabricated by utilizing high-energy ball milling and electrostatic assembly techniques. This material starts with a commercial Al60Si40 alloy as the raw material. Through a simple acid etching process, a porous silicon (pSi) matrix was produced. Germanium (Ge) was then introduced into the matrix via ball milling. Finally, with the aid of electrostatic assembly, a dual coating of graphene (Gr) and carbon nanotubes (CNTs) was achieved, endowing the material with a unique structure. The incorporation of Ge introduction effectively augments the conductivity and ion transport characteristics of pSi, substantially bolstering the reversible capacity of the entire electrode. The hybrid encapsulation with Gr and CNTs further fortifies the stability, mechanical robustness, and electrical conductivity of the electrode. When utilized as anodes in LIBs, the pSi/Ge@Gr/CNTs electrode demonstrated outstanding electrochemical performance, achieving a reversible discharge specific capacity exceeding 700 mAh·g-1 after 100 cycles at a current density of 0.2 A·g-1, accompanied by a remarkably enhanced rate performance.
Herein, a mesoporous magnetic nanocarrier containing disulfide bonds (NH2-SMNPs) was developed to improve the efficacy of tumor treatment and reduce side effects. After loading the carrier with doxorubicin (DOX), a nontoxic pullulan oxide was used as a gating material to form the oSMNPs/DOX nanodrug. This nanodrug exhibited uniform dispersion, good drug-loading capacity, and high saturation magnetization, enabling pH/glutathione (GSH) dual-responsive drug release in the tumor microenvironment, with a release rate as high as 81.53%. Furthermore, this nanodrug demonstrated good biocompatibility, effective capability to kill cancer cells, and competent cellular uptake ability.
Under hydrothermal conditions, semi-rigid 4-(1-carboxyethoxy)benzoic acid (H2cba) and Ni(Ⅱ) ions reacted with imidazole derivatives 1,4-di(1H-imidazol-1-yl)benzene (1,4-dib) and 4,4'-di(1H-imidazol-1-yl)-1,1'-biphenyl (4, 4' dib) to form complexes {[Ni(cba)(1, 4 dib)(H2O)0.5] ·0.5H2O}n (HU21) and {[Ni(cba)(4, 4' dib)(H2O)0.5] · 0.5H 2O}n (HU22), respectively. Singlecrystal X-ray diffraction analysis revealed that both complexes HU21 and HU22 contain binuclear [Ni2(CO2)2(H2O)]2+ units, which are further bridged together via cba2- anions to form 1D [Ni2(H2O)(cba)2]n chains in HU21 and HU22. In addition to the [Ni2(H2O)(cba)2]n chains, large right-handed and lefthanded helical chains were constructed by Ni(Ⅱ) ions, water molecules, and 1,4-dib ligands in HU21, with diameters of up to 1.6 nm along the b-axis. These helical chains are further joined together in a 1∶1 ratio to form a 3D framework. Subsequently, the [Ni2(H2O)(cba)2]n chains are incorporated into the 3D framework to build a six-connected dense network with a point symbol of (44.611) in HU21. In complex HU22, left-and right-handed helical chains were also observed. However, unlike the 3D framework constructed by helical chains in HU21, these helical chains in HU22 can only form a 2D layer. Adjacent layers are packed together in an ABAB pattern to form a six-connected framework in the presence of [Ni2(H2O) (cba)2]n chains. UV-Vis absorption experiments indicated that complexes HU21 and HU22 are semiconductor materials with strong light absorption capacities in the ultraviolet and visible regions. Moreover, magnetic experiments showed that HU21 and HU22 exhibit similar antiferromagnetic behaviors.
A cadmium-based coordination polymer [Cd4(L)4(1,4-bib)4]·2DMA (CP1) was synthesized under solvothermal conditions, where H2L=2 hydroxyterephthalic acid, 1, 4 bib=1, 4 bis(imidazol1 ylmethyl) benzene, and DMA=N,N-dimethylacetamide. The structure was characterized by thermogravimetric analysis, elemental analysis, infrared spectroscopy, and single-crystal X-ray diffraction. The single crystal structure shows that CP1 belongs to the orthorhombic system, the space group Pna21, Cd(Ⅱ) forms a 2D plane structure through L2-, and the 2D plane structure forms a 3D network with pcu topology through 1,4-bib. CP1 shows good fluorescence sensing performance and thermal stability and realizes efficient and sensitive detection of 2,4,6-trinitrophenol (TNP), Fe3+, and fluridine (FLU). The detection limits were 0.051 μmol·L-1 (TNP), 0.65 μmol·L-1 (Fe3+), and 0.14 μmol·L-1 (FLU), respectively. In addition, the mechanism of fluorescence detection of pollutant detection was explored and a portable test paper was successfully prepared. A portable test paper could not only selectively detect FLU, but also showed different fluorescence colors in different concentrations of FLU.
MoS2/Ag/g-C3N4 composite photocatalysts were prepared via hydrothermal synthesis, and a series of analytical methods were employed for systematic characterization. The results indicate that the significant enhancement in catalytic degradation activity is attributed to the formation of Z-scheme heterojunction, which effectively facilitates the transport and separation of photogenerated charge carriers while suppressing the recombination of photogenerated electron and hole pairs. Degradation experiments demonstrated that the prepared composite material achieved a degradation rate of up to 98% for rhodamine B (RhB) within 120 min, exhibiting superior photocatalytic performance compared to individual photocatalysts. Furthermore, capture experiments and electron paramagnetic resonance (EPR) results revealed that superoxide radicals (·O2-) and photogenerated holes (h+) were the key active species in the photocatalytic degradation of RhB. Finally, an in-depth discussion of the photocatalytic degradation mechanism of the composite material was conducted.
通过Sr、Ni共掺杂PrBaFe2O5+δ(PBF)制备了中温固体氧化物燃料电池PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ(PBSFN)阴极,并对其性能进行测试。X射线衍射(XRD)图表明,高温煅烧的PBSFN阴极形成了立方钙钛矿结构。在950℃下,混合共烧的PBSFN阴极与La0.9Sr0.1Ga0.83Mg0.17O3-δ(LSGM)电解质表现出良好的化学兼容性。350℃时,在空气气氛下,PBSFN电极材料的电导率最大,其值为681 S·cm-1。800℃时,在空气气氛下,PBSFN阴极在LSGM电解质上的极化阻抗为0.033 Ω·cm2。Sr、Ni掺杂PBSFN阴极的高频阻抗(R1)仅为低频阻抗(R2)的6.4%,表明Sr、Ni掺杂PBSFN提高了阴极的电荷转移效率。此外,该阻抗特性与密度泛函理论计算的PBSFN氧空位形成能结论一致。800℃时,以H2为燃料测试的单电池的最大功率密度为647 mW·cm-2。特别地,采用PBSFN为阴极的单电池在100 h内保持了良好的功率稳定性。
以锌基沸石咪唑酯骨架(Zn-based zeolitic imidazolate framework,Zn-ZIF)为前驱体,通过简单的一步热解策略制备出锌纳米粒子修饰的氮掺杂多孔碳(N-C)催化剂(Zn@N-C),进一步将其负载的Zn纳米粒子通过硒化反应转化为ZnSe纳米颗粒,构建出ZnSe@N-C异质结催化剂。采用X射线衍射(XRD)、拉曼(Raman)光谱、X射线光电子能谱(XPS)、场发射扫描电子显微镜(FESEM)和透射电子显微镜(TEM)对催化剂的组分、结构和形貌进行了表征,并通过电化学测试系统评估了2种催化剂在析氢反应(hydrogen evolution reaction,HER)中的催化活性和稳定性。结果表明:通过硒化处理,催化剂的形貌由规整的菱形十二面体(Zn@N-C)转变为结构塌陷、褶皱变形的十二面体(ZnSe@N-C),这增加了结构缺陷,从而引入了更多的催化活性位点。同时ZnSe和N-C基底间存在异质界面结构,这促进了电子的传输,提高了催化剂的活性。ZnSe@N-C在碱性HER过程中,在10 mA·cm-2的电流密度下获得了165.8 mV的过电位,优于Zn@N-C (190.8 mV)。此外,ZnSe@N-C在碱性溶液中具有良好的电化学稳定性。
通过溶剂热并辅以硫化法制备了金属有机骨架(MOF)基镍钴双金属硫化物微球,并通过高温热解有机碳源盐酸多巴胺制备了痕量氮掺杂碳包覆(NC)的Ni-Co-S@NC钠离子电池负极材料。这种改性能够有效提高电极材料的导电性以及结构和界面的稳定性,从而提高材料的循环稳定性。其中表面包覆约5 nm碳层的Ni-Co-S@NC-0.5微球具有出色的长循环寿命,其在1A·g-1下循环1 000圈后,仍有381.8 mAh·g-1的放电比容量和75.2%的容量保持率,相应地每圈循环的容量衰减量仅为0.126mAh·g-1;Ni-Co-S@NC-0.5||NVP/C (NVP:Na3V2(PO4)3)钠离子全电池在1 A·g-1下经过100次循环后,可逆放电比容量为386.2mAh·g-1,容量保持率为88.6%,库仑效率稳定在98.1%左右。动力学研究表明,Ni-Co-S@NC-0.5的储钠过程以赝电容行为控制为主,钠离子扩散系数在10-11~10-13 cm2·s-1之间,同时具有相对小的电荷转移阻抗(36.7 Ω)。
通过一步水热法成功制备了一种水系锌离子电池正极材料——富1T相的MoS2(1T′-MoS2)。表征结果与密度泛函理论(DFT)模拟计算表明,1T′-MoS2的电导率明显高于2H-MoS2,并且含有丰富的硫缺陷。这有助于大幅提升离子扩散速率和电荷转移速率,优化材料的电化学和动力学性能。因此,采用1T′-MoS2组装的电池在0.1 A·g-1的电流密度下,首次放电容量高达202 mAh·g-1。此外,在大电流密度下(1 A·g-1),其经过500次恒电流充放电循环后,电池的容量保持率为92%,显示出较高的容量和长循环稳定性。
本研究通过预修饰和后修饰2种策略分别合成了官能化锆基金属有机骨架(MOF)材料UiO-66-CHO和UiO-66-CH=C (CN)2,用于去除水中的四环素(TC)。采用粉末X射线衍射、FTIR、1H NMR、热重分析、扫描电子显微镜和N2吸附-脱附等测试手段对合成的MOFs进行了表征。UiO-66-CHO较UiO-66-CH=C (CN)2比表面积大,吸附性能更好。实验数据证实,2种MOFs对TC的吸附符合准二级动力学和Langmuir等温线模型,是单层的化学吸附。在pH=9.0时,UiO-66-CHO和UiO-66-CH=C (CN)2的理论最大吸附量分别为199.28和62.61 mg·g-1,平衡时间为150 min。热力学分析表明,UiO-66-CHO吸附TC是一个自发的吸热过程。UiO-66-CHO在重复5次循环吸附后,对TC去除率仍达75%以上。
采用密度泛函理论构建了不同卤族轴向配位原子修饰的碳载Fe-N4位点(Fe原子与同一水平面的4个N原子配位成键)模型(Fe-N4-F/C、Fe-N4-Cl/C和Fe-N4-Br/C),通过计算上述模型的态密度、Mulliken电荷、氧还原中间体吸附能以及氧还原自由能,深入研究卤族轴向配位原子对Fe中心电子结构和吸附行为的调控机理,明确不同卤族轴向原子与Fe-N4位点氧还原活性之间的构效关系。计算结果发现,引入Br作为轴向配位原子可以有效优化Fe原子的电子结构,从而适当降低Fe中心对OH*中间体的吸附强度,促进OH*解吸反应顺利进行。与Fe-N4/C模型相比,Fe-N4-Br/C模型具有更低的决速步骤(即OH*解吸)反应能垒。因此预测卤族轴向配位原子修饰策略能够改善Fe-N4位点的氧还原本征催化活性。
针对二维单层BiOI纳米片的晶格热导率及其声子输运性质进行了深入探究。通过结合第一性原理计算和玻尔兹曼输运理论,系统地分析了单层BiOI纳米片在不同温度下的声子群速度、格林艾森参数、三声子散射率和散射相空间等关键物理量。计算结果显示,单层BiOI纳米片在室温下的本征晶格热导率约为4.71 W·m-1·K-1,当温度升高至800 K时,其热导率显著降低至1.74 W·m-1·K-1。面外声学支(ZA)、横向声学支(TA)和纵向声学支(LA)声子模式在所研究的温度范围内对晶格热导率的贡献几乎相等。低晶格热导率的物理根源归结于低声子群速度、强烈的声子-声子散射过程以及较低的德拜温度。此外,还探讨了单层BiOI纳米片的电子结构,确认了其具有半导体特性,并且间接带隙约为2.16 eV。
以生物质橙子皮为原料,通过简单的一步水热法制备了橙子皮基碳量子点(orange peel-based carbon quantum dots,OP-CQDs),并用荧光分析法对其性质进行了研究。结果表明,OP-CQDs水溶性好、荧光强、在生理pH范围内性能稳定。OP-CQDs对铁离子(Fe3+)有特异性猝灭反应且灵敏度高,同时,L-抗坏血酸(L-ascorbic acid,L-AA)能够使OP-CQDs-Fe3+体系的荧光部分恢复,形成了“开-关-开”的荧光检测体系。Fe3+和L-AA的检出限分别为1.1和31.8 μmol·L-1。
为解决锂离子电池(LIBs)低温性能较差的问题,提出了一种通过调节电解质添加剂配方,提高电池低温性能的有效方法。其中,四氟硼酸锂(LiBF4)+碳酸亚乙烯酯(VC)+1,3-丙烷磺酸内酯(PS)+氟代碳酸乙烯酯(FEC)的添加剂配方对电极有较好的保护作用,能够提高电化学性能。结果表明,目标电解液具有良好的低温性能,在-20和-40℃条件下电极的首圈放电比容量(0.2C)分别为144.65和133.05 mAh·g-1,且具有良好的循环稳定性。研究表明,使用多功能添加剂可以显著提高锂离子的扩散速率,促进其在电极表面的释放。同时,添加剂较好的成膜性能还可以减少电池的极化,最终实现低温条件下高容量、高稳定的电池性能。

系统研究了中空纤维NaA分子膜在蒸汽渗透中结合真空抽吸和N2吹扫操作对乙醇深度脱水的过程。研究发现吹扫作用在乙醇深度脱水中占主导作用,与未加吹扫气的对照工况(操作温度100℃、原料液进料流量为30 mL·min-1)相比,N2吹扫(吹扫气流量为60 mL·min-1)可加倍提升脱水速率,快速得到超低含水量乙醇(水的质量分数约0.5%),效率提升约43%;升高温度至120℃时,增大原料液进料流量为50 mL·min-1时乙醇产品中水的质量分数可进一步降至0.068‰,收率达99.86%。
为研究取代基对铱磷光配合物光物理性质的影响,以2,4-二(2,4-二取代基苯基)吡啶[2,4-(2,4-2R-phenyl)2py,R=甲基(HL1)、甲氧基(HL2)、氟(HL3)、三氟甲基(HL4)]为主配体,即在主配体上2个苯基的2位和4位同时引入4个相同的甲基、甲氧基、氟或三氟甲基,同时以乙酰丙酮(Hacac)为辅助配体,合成出4个铱磷光配合物(Ln)2Ir (acac)[n=1(Ir1)、2(Ir2)、3(Ir3)、4(Ir4)]。通过元素分析、核磁共振谱(1H NMR和13C NMR)和单晶X射线衍射表征了铱磷光配合物的组成、空间结构和分子堆积。通过溶液和固态光致发光光谱、紫外可见吸收光谱、荧光寿命和理论计算对铱磷光配合物的光物理性能进行了深入和系统的研究。结果表明:4个铱磷光配合物均呈稍微扭曲的八面体构型,中心Ir(Ⅲ)分别与2个主配体的C和N原子配位形成五元螯合环,同时和辅助配体acac-的2个氧原子配位形成稳定的六元螯合环。配合物Ir1、Ir2、Ir3和Ir4在溶液状态下的发射波长分别为537、515、514和553 nm,溶液中量子产率分别为68%、83%、88%和81%,荧光寿命分别为26.75、163.93、64.50和330.39 ns。4个铱磷光配合物具有不同的电子云分布特征,取代基能够调控电子云在苯环上的分布,进一步实现发射波长、发光颜色,荧光寿命和分子堆积的调控。
在溶剂热条件下通过2,5-双(2H-四唑-5-基)对苯二甲酸配体(H4dtztp)与稀土Eu3+自组装得到了一例二维铕金属有机骨架[Eu (dtztp)0.5(H2dtztp)0.5(DMF)3]·0.113H2O (Eu-MOF),其中DMF为N,N-二甲基甲酰胺。利用X射线单晶衍射、粉末X射线衍射、热重分析和元素分析等技术确定了Eu-MOF的空间结构、相纯度和稳定性,同时,对Eu-MOF的固态荧光以及抗生素检测功能进行了探究。结果表明:Eu-MOF属于三斜晶系,
基于原子层沉积技术(ALD)制备TiO2和Al2O3纳米层并结合高温热处理优化工艺,研究了异质氧化物双层表面包覆和晶格内双阳离子梯度掺杂的2种表界面修饰法对NaNi1/3Fe1/3Mn1/3O2(NFM)正极材料电化学储钠性能和热稳定性的提升作用,以及其产气抑制效应。结果表明,在2.0~4.0 V (vs Na/Na+)工作电压和1C (120 mA·g-1)电流密度下,当容量达到第2次循环容量的60%时,经表面包覆的NFM@TiO2(10)@Al2O3(10)和表层晶格掺杂的NFM#Ti (35)#Al (10)正极材料(括号中数字对应ALD沉积的次数)分别能够循环319和358次,显著优于未修饰NFM材料(250次),同时通过差示扫描量热法(DSC)测得的热失控温度分别提升了6.1和9.7℃。原位差分电化学质谱(DEMS)测试表明,表面包覆显著抑制了H2等主要气体成分的形成,而晶格掺杂避免了电解液的二次分解,这可能是由于电解液质子化和高电压下氧化分解等有害副反应的减少。
通过将纳米Bi颗粒与三维多孔碳(3DPC)材料复合制备得到Bi/3DPC复合材料,有效提高了Bi的电化学性能。3DPC作为碳框架能缓冲充放电过程中Bi的体积膨胀以及提升材料导电性,且其微孔和介孔能够增加材料的比表面积,为吸附钠离子提供活性位点。Bi和3DPC发挥协同效应,在钠离子电池中展现出良好的倍率性能和长期循环稳定性。在5 A·g-1的电流密度下,Bi/3DPC在循环1 000圈后仍保持268.52 mAh·g-1的比容量。
通过引入—OH、—NH2和—SO3H极性官能团,设计了具有高比表面积、亚胺键连接的二维三聚茚酮基共价有机骨架(truxenone-based covalent organic frameworks,TRO-COFs),并通过巨正则蒙特卡洛(giant canonical Monte Carlo,GCMC)模拟和密度泛函理论(density functional theory,DFT)探究了298 K和0~1.0×105 Pa条件下极性官能团对TRO-COFs的CO2捕获性能的影响。结合能和内聚能的分析表明官能团引入后结构仍保持较高的稳定性。极性官能团的引入显著增强了TRO-COFs的CO2吸附性能。CO2吸附量大小顺序为TRO-COF-SO3H>TRO-COF-NH2>TRO-COF-OH>TRO-COF-H。在298 K和1.0×105 Pa条件下,TRO-COF-SO3H表现出8.02 mmol·g-1的CO2吸附量及CO2优于N2和CH4的选择性(37和26)。同时,通过径向分布函数和气体吸附密度分布也进一步说明了不同极性官能团对CO2捕获与分离性能影响的差异。最后,从吸附热、范德瓦耳斯力和库仑相互作用等多个角度详细阐明了极性官能团的作用机制。
采用两步水热法制备了BiSbO4/BiOBr复合材料,并对其微观形貌、物相结构、化学组成、光学性能、光催化性能进行测试。结果表明:由纳米棒组成的BiSbO4成功负载到片状BiOBr表面,二者产生的异质结结构不仅拓宽了催化剂的光响应范围还提升了光生电子-空穴对分离效率。其在模拟可见光下的光催化性能都优于单一的BiSbO4和BiOBr,当BiSbO4在复合材料中的质量分数为6%时,所制备的复合材料的光催化降解亚甲蓝(MB)性能最佳,其在模拟可见光下照射120 min后对MB的降解率达91.3%,经过4次循环后降解率仍有77.4%。
以V2O5/TiO2催化剂为基体,制备了一系列Ce、Mn改性催化剂,并结合氮气吸附-脱附、X射线衍射、X射线光电子能谱、扫描电子显微镜分析了催化剂的结构及活性组成,探究了其反应活性。结果表明,制备的改性V2O5/TiO2催化剂分散性好,Ce-Mn双金属改性提高了催化剂的NH3转化率和N2选择性。Ce、Mn负载量(Ce或Mn与TiO2的质量比)分别为8%、6%时,310℃下改性材料的NH3转化率为100%,N2选择性为78%。原位漫反射傅里叶变换红外光谱表征显示催化剂表面羟基吸附的NH3会优先参与反应,温度升高后催化剂表面的Brønsted和Lewis酸位点上吸附的NH3开始参与反应,较高温度下Lewis酸位点是主要的NH3转化位点。
研究了不同油酸(OA)、油胺(OLA)配体添加量在制备CdSe纳米晶体中对量子点荧光特性的影响,深入分析了OA和OLA配体在CdSe纳米晶体生长过程中的作用机理。在采用逐层生长法制备CdSe纳米晶体时,研究了OA和OLA配体对晶体尺寸及尺寸分布的影响,并制备了尺寸分布良好的较大尺寸CdSe纳米晶体。采用多种方法对CdSe纳米晶体的光学性能、晶体结构、微观形貌及尺寸分布进行表征分析。结果表明,OA配体的添加会使CdSe纳米晶体发射峰红移,且添加量与发射峰红移波长呈正相关,发射峰可调范围为548.5~604.0 nm;OLA配体添加量较少时会使CdSe纳米晶体发射峰蓝移,但随着OLA配体添加量的增加发射峰逐渐红移,发射峰可调范围为548.0~584.4 nm;在逐层生长法中引入OA和OLA配体可有效改善由于多次逐层生长而产生的发射峰双峰现象。最终通过调整制备工艺,制备了荧光发射可视化分离的4种CdSe纳米晶体,其尺寸分布良好,具有较高的光致发光量子产率(PLQY),抗光漂白性能较好。
通过配体取代反应合成了2个双膦配体桥联的四铁配合物[Fe4(CO)10(μ-SCH2CH (CH3) S)2(dppa)](1)和[Fe4(CO)10(μ-SCH2CH (CH3) S)2(trans-dppv)](2),其中dppa=双(二苯基膦)乙炔,trans-dppv=trans-1,2-双(二苯基膦)乙烯。配合物的结构经过元素分析、红外光谱、核磁共振氢谱、磷谱以及单晶X射线衍射等方法的表征。用循环伏安法研究了新配合物的电化学性质,结果表明它们均可以在乙腈溶液中催化醋酸中的质子还原产生氢气。其中配合物2的催化效率要明显优于配合物1。
采用传统固相法制备了La3+掺杂的0.28Pb (In1/2Nb1/2) O3-0.32Pb (Zn1/3Nb2/3) O3-0.3PbTiO3-0.1PbZrO3(PIN-PZN-PZT)四元压电陶瓷,研究了La3+掺杂量对PIN-PZN-PZT四元压电陶瓷微观结构和电学性能的影响。结果表明:引入La3+可以增强压电陶瓷局部结构异质性,进而提升介电弛豫特性并提高压电性能。当La2O3含量为1.5%时,获得了兼具高电致应变(0.23%)和高居里温度(206℃)的压电陶瓷材料。
合成了颗粒状、立方体状、纤维状和片状的BaTiO3粉体,并采用扫描电子显微镜、X射线衍射、傅里叶变换红外光谱、紫外可见吸收光谱对合成粉体的物相、形貌进行表征;比较不同形貌、催化条件下BaTiO3粉体的压电催化活性,并结合有限元分析解释了压电催化活性差异的原因。结果显示,片状形貌下的BaTiO3粉体具有压电催化活性优势,原因在于其产生了高压电势。且当催化剂固含量为2 g·L-1、超声频率为40 kHz、染料质量浓度为5 mg·L-1时具有较优的催化活性,并结合自由基捕获实验揭示了片状BaTiO3压电催化降解罗丹明B (RhB)染料的机制,即超氧自由基和羟基自由基作为主要反应物实现了污染物的降解。
利用水热法合成了一种宽带近红外Na3CrF6荧光粉,研究了其结构、微观形貌和光致发光性能。结果表明,在435 nm激发光的照射下,Na3CrF6荧光粉可发出650~850 nm宽带近红外光,其峰值位于738 nm处,半高宽为95 nm;通过分析光谱数据,发现Cr3+在Na3CrF6荧光粉中的晶体场强度为1.72,处于弱晶体场环境中;298~473 K温度范围内,随着加热温度的升高,Na3CrF6荧光粉的发光强度缓慢下降。
采用高温固相法制备了Sr1-xZrSi2O7∶xDy3+荧光粉,并用X射线衍射仪、扫描电子显微镜和荧光光谱仪对其晶体结构、形貌、光致发光特性和热稳定性进行了研究。结果表明,该荧光粉可以在353 nm的近紫外光激发下获得蓝光(493 nm)和橙红光(581 nm)发射峰,这2个峰分别归属于Dy3+离子的4F9/2→6H15/2和4F9/2→6H13/2能级跃迁。在该荧光粉中,Dy3+的猝灭浓度为0.03,猝灭机制是偶极-偶极相互作用。当温度升高到150℃时,其发光强度仍可以保持室温的83%,具有良好的热稳定性。
本工作研究了镍钴双金属磷化物(Ni-Co-P)在水溶液中的稳定性。结果显示,Ni-Co-P能与H2O反应,发生自腐蚀生成Ni2+、Co2+和PO43-离子,同时产生H2。Ni-Co-P与H2O的自腐蚀反应速率受到镍钴比例影响,Ni-Co-P中的Co含量升高,其在水中的腐蚀速率降低。详细研究了镍、钴投料比(nNi/nCo)为1∶2制备的Ni-Co-P在水中的腐蚀行为,其在水中的腐蚀速率与溶液pH值、氧气含量、光照、温度等因素有关。为了抑制Ni-Co-P (nNi/nCo=1/2)在水溶液中的腐蚀,在其表面包裹一层惰性TiO2保护层,这层TiO2保护层能有效减缓Ni-Co-P在水中的腐蚀,增强其稳定性。
Binary composites (ZIF-67/rGO) were synthesized by one-step precipitation method using cobalt nitrate hexahydrate as metal source, 2-methylimidazole as organic ligand, and reduced graphene oxide (rGO) as carbon carrier. Then Ru3+ was introduced for ion exchange, and the porous Ru-doped Co3O4/rGO (Ru-Co3O4/rGO) composite electrocatalyst was prepared by annealing. The phase structure, morphology, and valence state of the catalyst were analyzed by X-ray powder diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). In 1 mol·L-1 KOH, the oxygen evolution reaction (OER) performance of the catalyst was measured by linear sweep voltammetry, cyclic voltammetry, and chronoamperometry. The results show that the combination of Ru doping and rGO provides a fast channel for collaborative electron transfer. At the same time, rGO as a carbon carrier can improve the electrical conductivity of Ru-Co3O4 particles, and the uniformly dispersed nanoparticles enable the reactants to diffuse freely on the catalyst. The results showed that the electrochemical performance of Ru-Co3O4/rGO was much better than that of Co3O4/rGO, and the overpotential of Ru-Co3O4/rGO was 363.5 mV at the current density of 50 mA·cm-2.
Five cadmium naphthalene-diphosphonates, formulated as [Cd1.5(1,4-ndpaH2)2(4,4′-bpyH)(4,4′-bpy)0.5(H2O)2]2 (1), [Cd(1,4-ndpaH2)(1,4-bib)0.5(H2O)] (2), [Cd(1,4-ndpaH3)2(1,2-dpe)(H2O)]·(1,2-dpe)·7H2O (3), (1,2-bixH)[Cd3(1,4-ndpaH)(1,4-ndpaH2)2(H2O)2] (4), and [Cd(1,4-ndpaH2)(H2O)]·H2O (5), have been synthesized from the self-assembly reactions of 1,4-naphthalenediphosphonic acid (1,4-ndpaH4) with Cd(NO3)2·4H2O by introducing auxiliary ligands with variation of rigidity, such as 4,4′-bipyridine (4,4′-bpy), 1,4-bis(1-imidazolyl)benzene (1,4-bib), 1,2-di(4-pyridyl)ethylene (1,2-dpe), 1,3-di(4-pyridyl)propane (1,3-dpp), and bis(imidazol-1-ylmethyl)benzene (1,2-bix), respectively. Structure resolution by single-crystal X-ray diffraction reveals that compound 1 possesses a layered framework, in which the {Cd3(PO2)2} trimers made up of corner-sharing two {CdO4N2} and one {CdO6} octahedra are connected by phosphonate groups, forming a ribbon, which are cross-linked by 4,4′-bipy ligands, forming a 2D layer. Compound 2 shows a 3D open-framework structure, where chains of corner-sharing {CdO4N} trigonal bipyramids and {PO3C} tetrahedra are cross-linked by 1,4-bib and/or phosphonate groups. A 1D ladder-like chain structure is found in compound 3, where the ladder-like chains made up of corner-sharing {CdO5N} octahedra and {PO3C} tetrahedra are connected by 1,4-ndpaH22-. Both compounds 4 and 5 obtained by the introduction of flexible ligands during the synthesis show a 2D layered structure, which is formed by ligand crosslinking double metal chains. Interestingly, In 4, flexible 1,2-bix was singly protonated, as guest molecules, filled between layer and layer, while flexible ligand 1,3-dpp is absent in 5. Photophysical measurements indicate that compounds 1-5 show ligand-centered emissions.
A new cobalt(Ⅱ)-radical complex: [Co(im4-py)2(PNB)2] (im4-py=2-(4'-pyridyl)-4,4,5,5-tetramethylimidazole-1-oxyl, HPNB=p-nitrobenzoic acid) has been synthesized and characterized by X-ray diffraction analysis, elemental analysis, IR, and magnetic properties. X-ray diffraction analysis shows that the complex exists as mononuclear molecules and Co(Ⅱ)ion is four-coordinated with two radicals and two PNB- ligands. The magnetic susceptibility study indicates the complex exhibits weak ferromagnetic interactions between cobalt(Ⅱ) and im4-py radical. The magnetic property is explained by the magnetic and structure exchange mechanism.
Porous spherical MnCo2S4 was synthesized by a simple solvothermal method. Thanks to the well-designed bimetallic composition and the unique porous spherical structure, the MnCo2S4 electrode exhibited an exceptional specific capacitance of 190.8 mAh·g-1 at 1 A·g-1, greatly higher than the corresponding monometallic sulfides MnS (31.7 mAh·g-1) and Co3S4 (86.7 mAh·g-1). Impressively, the as assembled MnCo2S4||porous carbon (PC) hybrid supercapacitor (HSC), showed an outstanding energy density of 76.88 Wh·kg-1 at a power density of 374.5 W·kg-1, remarkable cyclic performance with a capacity retention of 86.8% after 10 000 charge-discharge cycles at 5 A·g-1, and excellent Coulombic efficiency of 99.7%.