cis/trans-Octahedral configuration induced topologically different MOFs: Syntheses, structures, and Hirshfeld surface analyses

Ri PENG Yingxiang BAI Yuxin XIE Dunru ZHU

Citation:  Ri PENG, Yingxiang BAI, Yuxin XIE, Dunru ZHU. cis/trans-Octahedral configuration induced topologically different MOFs: Syntheses, structures, and Hirshfeld surface analyses[J]. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1650-1660. doi: 10.11862/CJIC.20250143 shu

顺/反-八面体构型诱导的不同拓扑金属有机框架的合成、结构和Hirshfeld表面分析

    通讯作者: 朱敦如, zhudr@njtech.edu.cn
  • 基金项目:

    南京大学配位化学全国重点实验室开放课题 SKLCC2504

    材料化学工程全国重点实验室开放课题 SKL-MCE-24B03

摘要: 以2, 2′-二甲基-4, 4′-联苯二甲酸(H2L)为配体, 合成了2个金属有机框架(MOF): trans-[Co(L)(μ2-H2O)(H2O)2]·2H2O (1)和cis-[Mn(L)(Bipy)] (2)(Bipy=4, 4′-联吡啶), 并通过红外光谱、热重分析、粉末和单晶X射线衍射进行了表征。MOF 1结晶于三斜晶系P1空间群, 并含有2个晶体学独立的Co(Ⅱ)离子。每个trans-[CoO6]八面体之间通过μ2-H2O和双(单齿)配位的L2-连接形成二维sql拓扑网络。MOF 2结晶于单斜晶系C2/c空间群, 采用cis-[MnO4N2]八面体构型的Mn(Ⅱ)离子可视为一个6-节点, 再通过4-节点的L2-配体连接, 形成双节点(4, 6)-连接的三维fsc框架。通过3D Hirshfeld表面分析和2D指纹图研究了12中的分子间相互作用, 结果表明, 1中的主要相互作用是H…H和O…H/H…O接触, 2中主要是H…H和C…H/H…C接触。热重分析表明, 12的框架分别在390和370 ℃下保持稳定。

English

  • In coordination chemistry, there are usually cis/trans-configuration isomers in the octahedral complexes, and the cis/trans-complexes often show significantly different structures and properties[1]. This interesting phenomenon has also been observed in metal-organic frameworks (MOFs)[2-4]. As a new generation of porous materials, MOFs have been widely applied in various fields such as gas separation, catalysis, sensors, and proton conductivity[5-9]. Over the past two decades, our group has paid more attention to the substituted 4, 4′-biphenyldicarboxylic acids for constructing MOFs because the judicious selection of substituted groups on the biphenyl ring can finely modulate the topological structures and performances of the resulting MOFs[10-22]. Among them, 2, 2′-dimethyl-4, 4′-biphenyldicarboxylic acid (H2L) is one of the most notable ligands. Up to now, we and other groups have reported many novel topological MOFs based on the H2L ligand[20-40]. For instance, in 2015 by self-assembling H2L with the unique 8-connected [Zr6O4(OH)8(H2O)4] clusters via a sequential linker installation strategy, Prof. Zhou and coworkers successfully constructed a novel Zr-MOF: [Zr6O4(OH)8(L)4(H2O)4] (PCN-700) with a 3D bcu topological net[25]. In 2022, by employing H2L to coordinate with UO22+ ion, Prof. Farha et al. reported a U-based MOF: (H3O)0.9K0.1[UO2(L)1.5] (NU-1303-6) with a six-fold interpenetrated 3D srs topological network[37]. In 2021, by using H2L to bind with a cis-[InO4(μ2-OH)2] octahedron, a chiral 3D MOF, [In(μ2-OH)(L)]·3H2O·2DMA (DMA=N, N-dimethylacetamide) exhibiting an unprecedented 4-connected umy topology was reported by us[20]. In 2024, by adopting H2L to link a rare tetranuclear [In4(μ2-OH)3]9+ cluster, we successfully constructed a novel trinodal 3, 3, 4-connected 3D MOF: [In8(μ2-OH)6(μ2-H2O)3(L)6Cl6]·5DMF·4H2O (DMF=N, N-dimethylformamide) to show a reversible NH3 uptake under mild conditions (the regenerated temperature is only 60 ℃)[22]. As a continuation of our research on the H2L ligand, herein we report the syntheses of two new MOFs, trans-[Co(L)(μ2-H2O)(H2O)2]·2H2O (1) and cis-[Mn(L)(Bipy)] (2) (Bipy=4, 4′-bipyridine). Notably, the trans-[CoO6] octahedron in 1 induces a 2D sql topological network, while the cis-[MnO4N2] octahedron in 2 induces a 3D fsc topological framework. Their thermal stabilities and Hirshfeld surface analyses were also studied.

    Ligand H2L was prepared according to the reported method[20, 25]. All the other chemicals and solvents used were of analytical grade and used without further purification. Elemental analysis was performed by a Thermo Finnigan Flash 1112A elemental analyzer. IR spectrum (4 000-400 cm-1) was recorded on a Nicolet 380 FTIR instrument (KBr discs). Thermogravimetric analysis (TGA) was carried out on a NETZSCH STA 449C thermal analyzer under N2 atmosphere at a scan rate of 10 ℃·min-1. Powder X-ray diffraction (PXRD) data were collected on a Bruker D8 ADVANCE diffractometer using Cu radiation (λ=0.154 06 nm) at 40 kV and 40 mA in a range of 5°-50°.

    A mixture of Co(NO3)2·6H2O (0.011 6 g, 0.04 mmol), H2L (0.010 8 g, 0.04 mmol), DMF (0.25 mL), and H2O (0.25 mL) was heated in a 25 mL stainless-steel reactor lined with Teflon at 100 ℃ for 48 h. After cooling down to room temperature, the red crystals of 1 were obtained in a yield of 73.7% (0.012 3 g) based on H2L. FTIR (KBr disc, cm-1): 3 631(w), 3 384(m), 2 921(m), 1 576(s), 1 530(s), 1 409(vs), 1 372(s), 772(s). Anal. Calcd. for C16H22CoO9(%): C, 46.05; H, 5.31. Found(%): C, 46.21; H, 5.43.

    A mixture of MnCl2·4H2O (0.004 g, 0.02 mmol), Bipy (0.003 2 g, 0.02 mmol), H2L (0.005 4 g, 0.02 mmol), DMF (0.1 mL) and H2O (1 mL) was heated in a 25 mL stainless-steel reactor lined with Teflon at 120 ℃ for 48 h. After cooling down to room temperature, the yellow crystals of 2 were obtained in a yield of 75.1% (0.007 2 g) based on H2L. FTIR (KBr disc, cm-1): 3 074(w), 2 919(w), 2 854(w), 1 604(s), 1 581(s), 1 542(s), 1 402(vs), 813(s), 628(m). Anal. Calcd. for C26H20MnN2O4(%): C, 65.14; H, 4.21; N, 5.84. Found(%): C, 65.32; H, 4.33; N, 5.71.

    Suitable single crystals of 1 and 2 were chosen for lattice parameter determination and collection of intensity data on a Rigaku XtaLAB Synergy-R DW diffractometer with a graphite-monochromated Cu (λ=0.154 184 nm) radiation using a ω-2θ scan mode at 298 K. The crystal structures were solved by direct methods with the SHELXT program in the Olex2 software[41]. All non-hydrogen atoms were refined with anisotropic displacement parameters, and all hydrogen atoms were calculated and refined as riding modes except water molecules. The O5W of 1 was disordered over two positions and refined with an occupancy factor of 0.55(5) for O5W and 0.45(5) for O5WA. The atomic coordinates and anisotropic temperature factors were refined on F 2 by the full-matrix least squares method using the SHELXL program[42]. The crystallographic data of 1 and 2 are listed in Table 1. Selected bond lengths and bond angles are presented in Table 2.

    Table 1

    Table 1.  Crystallographic data of MOFs 1 and 2
    下载: 导出CSV
    Parameter 1 2
    Empirical formula C16H22CoO9 C26H20MnN2O4
    Formula weight 417.26 479.38
    Crystal system Triclinic Monoclinic
    Space group P1 C2/c
    a / nm 0.807 1(2) 1.397 5(3)
    b / nm 1.057 8(3) 1.846 4(4)
    c / nm 1.095 7(2) 0.911 4(2)
    α / (°) 85.666(2)
    β / (°) 88.563(2) 98.948(2)
    γ / (°) 83.255(2)
    V / nm3 0.926 2(1) 2.323 1(1)
    Z 2 4
    Dc / (g·cm-3) 1.496 1.371
    μ / mm-1 7.685 4.909
    F(000) 434.0 988.0
    Crystal size / mm 0.19×0.14×0.11 0.25×0.22×0.18
    θ range / (°) 4.047-66.041 3.998-67.953
    Reflection collected 9 334 15 045
    Independent reflection 3 216 (Rint=0.097 7) 2 117 (Rint=0.064 9)
    Reflection observed [I > 2σ(I)] 2 649 2 010
    Data, restraint, number of parameters 3 216, 1, 256 2 117, 0, 152
    Goodness-of-fit on F 2 1.016 1.093
    R1, wR2 [I > 2σ(I)] 0.056 8, 0.146 4 0.034 3, 0.093 8
    R1, wR2 (all data) 0.068 6, 0.153 0 0.035 7, 0.094 5
    ρ)max, (Δρ)min / (e·nm-3) 750, -590 340, -460

    Table 2

    Table 2.  Selected bond lengths (nm) and angles (°) for MOFs 1 and 2
    下载: 导出CSV
    1
    Co1—O1W 0.205 9(2) Co1…Co2v 0.403 6(2) Co2—O4 0.203 5(2)
    Co1—O2 0.204 6(2) Co2—O2Wii 0.222 6(2) C1—O1 0.127 2(4)
    Co1—O2W 0.222 8(2) Co2—O3W 0.207 2(2)
    O1W—Co1—O2Wi 93.91(10) O2—Co1—O2Wi 93.02(9) O4—Co2—O2Wii 92.84(9)
    O1W—Co1—O2W 86.09(10) O2i—Co1—O2 180.00(12) O4—Co2—O2Wiii 87.16(9)
    1
    O2—Co1—O1Wi 89.21(11) O3Wiv—Co2—O2Wiii 93.46(9) O4iv—Co2—O3W 89.31(11)
    O2—Co1—O2W 86.98(9) O3W—Co2—O2Wiii 86.54(9) O4iv—Co2—O4 180.00
    2
    Mn1—O1 0.216 3(2) Mn1—O2ii 0.213 4(2) Mn1—N1 0.229 3(2)
    Mn1…Mn1ii 0.4889(2)
    O1—Mn1—O1i 165.62(8) O2ii—Mn1—O1 100.84(5) N1—Mn1—N1i 89.02(8)
    O1—Mn1—N1 86.11(6) O2iii—Mn1—N1 175.32(5) O2ii—Mn1—N1 90.02(6)
    O1—Mn1—N1i 83.65(5) O2ii—Mn1—O2iii 91.37(8)
    Symmetry codes: i 1-x, -y, 2-z; ii -x, 1-y, 1-z; iii x, 1+y, z-1; iv -x, 2-y, -z; v x, y-1, z+1 for 1; i 1-x, y, 1/2-z; ii 1-x, 1-y, 1-z; iii x, 1-y, z-1/2 for 2.

    The X-ray crystallographic study shows that 1 crystallizes in the triclinic P1 space group (Table 1). The asymmetric unit of 1 consists of two crystallographically distinct Co(Ⅱ) ions (the occupancy factors of Co1 and Co2 are 0.5), one L2- ligand, three coordinated H2O molecules (O1W, μ2-O2W, and O3W), and two lattice H2O molecules (O4W and O5W, Fig.S1, Supporting information). Both Co1 and Co2 ions display trans-[CoO6] octahedral geometry where two carboxylate oxygen atoms (O2 and O2i for Co1, and O4 and O4iv for Co2) from two different L2- ligands occupy the axial positions, and four coordinated H2O molecules (O1W, O1Wi, μ2-O2W, and μ2-O2Wi for Co1, and μ2-O2Wii, μ2-O2Wiii, O3W, and O3Wiv for Co2) are in the equatorial positions (Fig. 1a). Their configurations are further confirmed by the SHAPE software with the continuous symmetry measures (CSM) of Co1 and Co2 being calculated as 0.283 and 0.260, respectively[43]. The bond distances of Co—O [0.203 5(2)-0.222 8(2) nm, Table 2] are comparable to the related Co-based MOFs[24, 44]. Both Co1 and Co2 ions are bridged by a μ2-O2W to form a 1D chain along the a-axis with a Co1…Co2v distance of 0.403 6(2) nm (Table 2). These 1D chains are further connected by the L2- ligands to generate a 2D layer (Fig. 1b). If the trans-[CoO6] octahedron is regarded as a 4-connected node and the L2- ligand as a line, the structure of 1 can be simplified as a 2D network with sql topology (Fig. 1c), which shows the same topological net as observed in a related Ni-MOF: [Ni(μ2-H2O)(L)(DMF)(H2O)]·0.5H2O[21]. However, there are two obvious structural differences between 1 and the Ni-MOF: (1) 1 belongs to the triclinic P1 space group, whereas the Ni-MOF has the monoclinic P21/c space group. (2) Two trans-monocoordinated H2O molecules exist in 1, while one monocoordinated H2O and one DMF molecule are found in the Ni-MOF in a trans-configuration. Notably, in 1 there are ten kinds of strong intermolecular OW—H…O hydrogen bonds between the coordinated/lattice H2O molecules and the uncoordinated/coordinated carboxylic O atoms or the lattice H2O molecules, two types of C—H…π interactions and a kind of weak intermolecular C—H…O hydrogen bond (Fig.S2 and Table S1). All these interactions further interconnect the adjacent 2D layers to produce a 3D supramolecular network (Fig. 1d).

    Figure 1

    Figure 1.  (a) trans-[CoO6] octahedron in MOF 1; (b) 2D layer consisting of trans-[CoO6] octahedron and L2- parallel to the ac plane; (c) 2D sql topological network; (d) 3D hydrogen-bonded supramolecular framework

    Symmetry codes: i 1-x, -y, 2-z; ii-x, 1-y, 1-z; iii x, 1+y, z-1; iv-x, 2-y, -z; v 1-x, -y, 1-z; vi x, y-1, z+1; vii 1-x, 1-y, 2-z; viii x, y-1, z; ix -x, 1-y, -z; x -x, 2-y, -1-z; xi x, y, z-1

    The crystal structure analysis reveals that 2 crystallizes in the monoclinic C2/c space group (Table 1). The asymmetric unit contains one Mn(Ⅱ) ion (the occupancy factor is 0.5), half of the L2- ligand and half of the Bipy molecule (Fig.S3). The Mn1 ion adopts a cis-[MnO4N2] octahedral configuration where two carboxylate O atoms (O1 and O1i) from two different L2- ligands occupy the axial positions, and the other two carboxylate O atoms (O2ii and O2iii) and two N atoms (N1 and N1i) from two different Bipy molecules locate at a cis-position in the equatorial plane (Fig. 2a). The CSM value of Mn1 is 0.506[43]. The bond distances of Mn—O [0.213 4(2)-0.216 3(2) nm] and Mn—N [0.229 3(2) nm] are in good agreement with the related Mn-based MOFs (Table 2)[45-46]. Two adjacent Mn1 ions are bridged by two carboxylic groups with a bidentate syn-syn mode to form a 1D [Mn(CO2)2]n chain along the c-axis with a Mn1…Mn1ii distance of 0.488 9(2) nm (Fig. 2b, Table 2). The 1D chains are further linked through the L2- ligands to form a 2D layer parallel to the ac plane (Fig. 2b). Then the 2D layers are pillared by the Bipy molecules along the b-axis to produce a 3D network (Fig. 2c). If the cis-[MnO4N2] octahedron is regarded as a 6-connected node (Fig. 2d) and the L2- ligand as a 4-connected node (Fig. 2e), the final structure of 2 is a binodal (4, 6)-connected fsc topological framework (Fig. 2f), which is similar to that found in a related 3D Co-MOF: cis-[Co(L)(Bipy)][24], a 3D Cu-MOF: [Cu2(L′)(Bipy)2]·DMA·3H2O (H4L′=2, 2′-disulfonyl-4, 4′-biphenyldicarboxylic acid)[19] and a multinuclear Cd-MOF: [Cd12(btc)8(DMF)14(H2O)2]·1.5DMF (H3btc=1, 3, 5-benzenetricarboxylic acid)[47]. Additionally, two kinds of weak C—H…O hydrogen bonds and two types of weak intermolecular C—H…π interactions are observed in 2 (Fig.S4 and Table S2).

    Figure 2

    Figure 2.  (a) cis-[MnO4N2] octahedron in MOF 2; (b) 2D layer consisting of Mn(Ⅱ) and L2- parallel to the ac plane; (c) 2D layers pillared by the Bipy molecules to form a 3D network; (d) cis-[MnO4N2] octahedron as a 6-connected node; (e) L2- as a 4-connected node; (f) binodal (4, 6)-connected fsc topological framework

    Symmetry codes: i 1-x, y, 1/2-z; ii 1-x, 1-y, 1-z; iii x, 1-y, z-1/2.

    In MOFs built from the multicarboxylic acids, the ligands often exhibit diverse coordination modes. In 1 and 2, the two carboxylic groups of the H2L ligand are deprotonated, and there are two types of different coordination modes (Scheme 1). The L2- ligand in 1 behaves as a bis(unidentate) coordination mode (Scheme 1a), which is also found in our reported [Ni(μ2-H2O)(L)(DMF)(H2O)]·0.5H2O[21]. In 2, each L2- ligand can link four Mn(Ⅱ) ions in a bis(bridging bidentate) syn-syn mode (Scheme 1b), which is similar to that observed in [Mn(L″)(DMF)]n (H2L″=2, 2′-dimethoxy-4, 4′-biphenyldicarboxylic acid)[12]. This obvious difference in the coordination modes of the L2- ligand can not only induce a trans-[CoO6] octahedron in 1 and a cis-[MnO4N2] octahedron in 2, but also make an important influence on the dihedral angles between the biphenyl rings as well as between the carboxylate group and the phenyl ring. These dihedral angles in 1 and 2 are comparable to the related mononuclear MOFs[21, 24, 37], as summarized in Table 3.

    Scheme 1

    Scheme 1.  Coordination modes of the L2- ligands in MOFs 1 (a) and 2 (b)

    Table 3

    Table 3.  Comparison of the dihedral angles in the mononuclear MOFs based on H2L
    下载: 导出CSV
    MOF Coordination mode SBU Dihedral angles / (°) Ref.
    Ph/Ph rings Ph/CO2-
    1 bis(unidentate) trans-[CoO6] 84.72(10) 17.50(19), 14.04(18) This work
    2 bis(bridging bidentate): syn-syn cis-[MnO4N2] 66.18(6) 18.66(11) This work
    [Co(L)(Bipy)] bis(bridging bidentate): syn-syn cis-[CoO4N2] 66.07(16) 18.56(21) [24]
    [Zn(L)(Im)]a bis(bridging bidentate): syn-anti [ZnO2N2] 71.05(14) 15.14(28) [24]
    [Ni(H2O)2(L)(DMF)]·0.5H2O bis(unidentate) [NiO6] 83.45(18) 11.30(22) [21]
    NU-1303-3b bis(chelating bidentate) [UO2(CO2)3] 79.15(16) 14.76(29), 6.91(25) [37]
    83.96(11) 11.67(18), 3.82(22)
    76.78(98) 7.63(17), 3.78(18)
    81.97(12) 10.58(21), 2.75(27)
    61.53(94) 12.69(14), 8.19(34)
    86.87(15) 14.78(27), 7.97(22)
    71.92(20) 14.64(33), 11.20(32)
    68.36(99) 12.84(65), 4.29(34)
    89.01(16) 8.39(11), 5.67(17)
    76.37(46) 6.29(83)
    NU-1303-6b bis(chelating bidentate) [UO2(CO2)3] 89.56(10) 19.68(13), 7.43(16) [37]
    88.80(88) 8.68(18)
    a Im=imidazole; b NU=Northwestern University.

    In the IR spectra of 1 and 2, the asymmetric or symmetric stretching vibrations of the carboxylate groups were observed around 1 576 or 1 409 cm-1 for 1 and 1 542 or 1 402 cm-1 for 2, respectively (Fig.S5). The disappearance of any strong absorption bands around 1 720 cm-1 proves the complete deprotonation of the carboxyl group of the H2L ligand during the coordination. The bands at 3 631 and 3 384 cm-1 are assigned to O—H stretching vibrations of coordinated/lattice H2O molecules in 1, respectively. The bands at 1 604 and 1 581 cm-1 can be attributed to C=N stretching vibrations of the pyridyl ring in 2[1]. The typical stretching vibration peaks of methyl groups were 2 921 cm-1 for 1 and 2 919 cm-1 for 2, respectively. These features are in good consistent with the results of their single-crystal X-ray diffraction.

    The PXRD patterns of 1 and 2 and their simulated ones are shown in Fig.S6. The experimental patterns matched well with the simulated ones from single-crystal X-ray diffraction data, verifying the high phase purity of the bulk products.

    TGA curves of 1 and 2 are indicated in Fig. 3. For 1, the weight loss of 21.7% between 25 and 390 ℃ can be assigned to the removal of three coordinated H2O molecules and two lattice H2O molecules (Calcd. 21.6%). The framework collapse occurred above 390 ℃. The final residue of 18.2% corresponds well to the theoretical value of CoO (18.0%, Fig. 3a). Due to no solvent molecules in 2, the decomposition of the framework was observed above 370 ℃. The final residue of 14.4% in 2 can be attributed to MnO (Calcd. 14.8%, Fig. 3b). These results indicate that both 1 and 2 have a good thermal stability of the framework.

    Figure 3

    Figure 3.  TGA curves of 1 (a) and 2 (b)

    As a powerful visualization tool, Hirshfeld surface analysis enables a direct observation of various weak intermolecular interactions such as hydrogen bonds and C—H…π within a crystal structure. Therefore, 3D Hirshfeld surface analysis has been performed to understand the intermolecular interactions in 1 and 2, and the corresponding 2D fingerprint plots quantify each type of intermolecular interaction[48]. Fig. 4 shows the 3D Hirshfeld surfaces of 1 and 2 mapped with dnorm, respectively. The surface is exhibited with a red-white-blue color: the red spots represent close contacts such as O—H…O interactions, while the white and blue regions stand for weak contacts, like C—H…O and C—H…π interactions in 1 and 2[49]. For 1, there are twelve intense red spots near five water molecules, four carboxyl oxygen atoms, and two Co(Ⅱ) ions. For 2, three strong red dots are observed near the carboxyl oxygen atoms, the pyridine ring, and the Mn(Ⅱ) ion.

    Figure 4

    Figure 4.  Three-dimensional Hirshfeld surfaces of 1 and 2 mapped with dnorm along the a-axis

    Fig. 5 presents the 2D fingerprint plots of 1 and 2, highlighting the contributions of main intermolecular interactions to the Hirshfeld surface. The overall (100%) 2D fingerprint plot for 1 is displayed in Fig. 5a. The maximum contribution is from H…H contacts (39.7%), which appears in the middle of the fingerprint plot (Fig. 5b). The next is O…H/H…O contacts (30.7%) with two sharp symmetric peaks in the plot (Fig. 5c). They have the most significant contribution to the total Hirshfeld surface (70.4%). Additionally, the C…H/H…C contacts (18.0%, Fig.S7a) and Co…O short contacts (7.4%, Fig.S7b) also contribute to the Hirshfeld surface to some extent. The overall (100%) 2D fingerprint plot for 2 is shown in Fig. 5d. The maximum contribution is also from H…H contacts (39.4%) in the middle of the fingerprint plot with one sharp peak at the forefront (Fig. 5e). The next is C…H/H…C contacts (29.8%) in the edges of the fingerprint plot (Fig. 5f). They have the most significant contribution to the total Hirshfeld surface (69.2%). In addition, the O…H/H…O contacts (10.1%, Fig.S8a), Mn…O (7.0%, Fig.S8b), and C…C (6.2%, Fig.S8c) short contacts also make a contribution to the Hirshfeld surface to some extent. The contribution of the weak intermolecular interactions in 1 and 2 to the Hirshfeld surface area is summarized in Table S3. The abundant hydrogen bonding interactions (88.4%) in 1 and (79.3%) in 2 may contribute to their relatively high thermal stabilities of the frameworks, which have been confirmed by the TGA results.

    Figure 5

    Figure 5.  Two-dimensional fingerprint plots for 1: (a) all, (b) H…H and (c) O…H/H…O contacts, and 2: (d) all, (e) H…H and (f) C…H/H…C contacts

    Unit: nm.

    Two novel MOFs, 1 and 2, based on 2, 2′-dimethyl-4, 4′-biphenyldicarboxylic acid have been synthesized and structurally characterized. X-ray crystallographic analyses reveal that the trans-[CoO6] octahedral configuration induces a 2D sql topological network in 1, while the cis-[MnO4N2] octahedral configuration produces a 3D fsc topological framework in 2. Both 1 and 2 exhibit good thermal stability of the framework.


    Supporting information is available at http://www.wjhxxb.cn
    1. [1]

      ZHU D R, XU Y, YU Z, GUO Z J, SANG H, LIU T, YOU X Z. A novel bis(trans-thiocyanate)iron(Ⅱ) spin-transition molecular material with bidentate triaryltriazole ligands and its bis(cis-thiocyanate)iron(Ⅱ) high-spin isomer[J]. Chem. Mater., 2002, 14(2):  838-843.

    2. [2]

      GAO T, WANG X Z, GU H X, XU Y, SHEN X, ZHU D R. Two 3D metal-organic frameworks with different topologies, thermal stabilities and magnetic properties[J]. CrystEngComm, 2012, 14(18):  5905-5913.

    3. [3]

      LI J T, LUO X L, ZHOU Y, ZHANG L R, HUO Q S, LIU Y L. Two metal-organic frameworks with structural varieties derived from cis-trans isomerism nodes and effective detection of nitroaromatic explosives[J]. Cryst. Growth Des., 2018, 18(3):  1857-1863.

    4. [4]

      XUE Y Y, LI S N, JIANG Y C, HU M C, ZHAI Q G. Quest for 9-connected robust metal-organic framework platforms based on[M3(O/OH)(COO)6(pyridine)3] clusters as excellent gas separation and asymmetric supercapacitor materials[J]. J. Mater. Chem. A, 2019, 7(9):  4640-4650.

    5. [5]

      ZENG H, XIE M, WANG T, WEI R J, XIE X J, ZHAO Y F, LU W G, LI D. Orthogonal-array dynamic molecular sieving of propylene/propane mixtures[J]. Nature, 2021, 595:  542-548.

    6. [6]

      ZHU J, USOV P M, XU W Q, CELIS-SALAZAR P J, LIN S Y, KESSINGER M C, LANDAVERDE-ALVARADO C, CAI M, MAY A M, SLEBODNICK C, ZHU D R, SENANAYAKE S D, MORRIS A J. A new class of metal-cyclam-based zirconium metal-organic frameworks for CO2 adsorption and chemical fixation[J]. J. Am. Chem. Soc., 2018, 140(3):  993-1003.

    7. [7]

      LI Y X, LI J, ZHU D R, WANG J Z, SHU G F, LI J J, ZHANG S L, ZHANG X J, COSNIER S, ZENG H B, SHAN D. 2D Zn-porphyrin-based Co(Ⅱ)-MOF with 2-methylimidazole sitting axially on the paddle-wheel units: An efficient electrochemiluminescence bioassay for SARS-CoV-2[J]. Adv. Funct. Mater., 2022, 32(48):  2209743.

    8. [8]

      ZHANG S L, XIE Y X, SOMERVILLE R J, TIRANI F F, SCOPELLITI R, FEI Z F, ZHU D R, DYSON P J. MOF-based solid-state proton conductors obtained by intertwining protic ionic liquid polymers with MIL-101[J]. Small, 2023, 19(41):  2206999.

    9. [9]

      ZHANG S L, XIE Y X, YANG M R, ZHU D R. Porosity regulation of metal-organic frameworks for high proton conductivity by rational ligand design: Mono-versus disulfonyl-4, 4'-biphenyldicarboxylic acid[J]. Inorg. Chem. Front., 2022, 9(6):  1134-1142.

    10. [10]

      ZHANG H J, WANG X Z, ZHU D R, SONG Y, XU Y, XU H, SHEN X, GAO T, HUANG M X. Novel 3D lanthanide-organic frameworks with an unusual infinite nanosized ribbon[Ln3(μ3-OH)2(-CO2)6]n+ (Ln=Eu, Gd, Dy): Syntheses, structures, luminescence, and magnetic properties[J]. CrystEngComm, 2011, 13(7):  2586-2592.

    11. [11]

      XU H, BAO W W, XU Y, LIU X L, SHEN X, ZHU D. An unprecedented 3D/3D hetero-interpenetrated MOF built from two different nodes, chemical composition, and topology of networks[J]. CrystEngComm, 2012, 14(18):  5720-5722.

    12. [12]

      LUO R, XU H, GU H X, WANG X, XU Y, SHEN X, BAO W W, ZHU D R. Four MOFs with 2, 2'-dimethoxy-4, 4'-biphenyldicarboxylic acid: Syntheses, structures, topologies and properties[J]. CrystEngComm, 2014, 16(5):  784-796.

    13. [13]

      QIN T, GONG J, MA J H, WANG X, WANG Y H, XU Y, SHEN X, ZHU D R. A 3D MOF showing unprecedented solvent-induced single-crystal-to-single-crystal transformation and excellent CO2 adsorption selectivity at room temperature[J]. Chem. Commun., 2014, 50(100):  15886-15889.

    14. [14]

      WANG X, ZHAO J, ZHAO Y, XU H, SHEN X, ZHU D R, JING S. Three sra topological lanthanide-organic frameworks built from 2, 2'-dimethoxy-4, 4'-biphenyldicarboxylic acid[J]. Dalton Trans., 2015, 44(19):  9281-9288.

    15. [15]

      ZHAO J, WANG X, ZHAO J, LUO R, SHEN X, ZHU D R, JING S. [Ln4@Ln4] matryoshka tetrahedron: A novel secondary building unit[J]. CrystEngComm, 2016, 18(6):  863-867.

    16. [16]

      ZHAO J, HE X, ZHANG Y, ZHU J, SHEN X, ZHU D R. Highly water stable lanthanide metal-organic frameworks constructed from 2, 2'-disulfonyl-4, 4'-biphenyldicarboxylic acid: Syntheses, structures, and properties[J]. Cryst. Growth Des., 2017, 17(10):  5524-5532.

    17. [17]

      冯上发, 何鑫, 秦涛, 张顺林, 朱敦如. 2, 2'-二硝基-4, 4'-联苯二甲酸构筑的四个稀土金属有机骨架[J]. 无机化学学报, 2017,33,(11): 2095-2102. doi: 10.11862/CJIC.2017.241FENG S F, HE X, QIN T, ZHANG S L, ZHU D R. Four lanthanide-organic frameworks built from 2, 2'-dinitro-4, 4'-biphenyldicarboxylic acid[J]. Chinese J. Inorg. Chem., 2017, 33(11):  2095-2102. doi: 10.11862/CJIC.2017.241

    18. [18]

      ZHANG Y C, WU Y H, HE X, MA J H, SHEN X, ZHU D R. Topological identification of the first uninodal 8-connected lsz MOF built from 2, 2'-difluorobiphenyl-4, 4'-dicarboxylate pillars and cadmium(Ⅱ)-triazolate layers[J]. Acta Crystallogr. Sect. C, 2018, C74(3):  256-262.

    19. [19]

      ZHANG S L, GAO S, WANG X, HE X, ZHAO J, ZHU D R. Two topologically different 3D Cu metal-organic frameworks assembled from the same ligands: Control of reaction conditions[J]. Acta Crystallogr. Sect. B, 2019, B75(6):  1060-1068.

    20. [20]

      HE X, WANG X, XIAO T Y, ZHANG S L, ZHU D R. Creative construction of a series of chiral 3D indium-organic frameworks with a umy topology[J]. Inorg. Chem., 2021, 60(1):  9-13.

    21. [21]

      何鑫, 张顺林, 肖天宇, 朱敦如. 2, 2'-二甲基-4, 4'-联苯二甲酸构筑的两个金属有机骨架[J]. 无机化学学报, 2021,37,(5): 945-952. HE X, ZHANG S L, XIAO T Y, ZHU D R. Two metal-organic frameworks built from 2, 2'-dimethyl-4, 4'-biphenyldicarboxylic acid[J]. Chinese J. Inorg. Chem., 2021, 37(5):  945-952.

    22. [22]

      HE X, GAO S Y, PENG R, ZHU D R, YU F. A novel topological indium-organic framework for reversible ammonia uptake under mild conditions and catalysis[J]. J. Mater. Chem. A, 2024, 12(24):  14501-14507.

    23. [23]

      FURUKAWA H, KIM J, OCKWIG N W, O'KEEFFE M, YAGHI O M. Control of vertex geometry, structure dimensionality, functionality, and pore metrics in the reticular synthesis of crystalline metal-organic frameworks and polyhedra[J]. J. Am. Chem. Soc., 2008, 130(35):  11650-11661.

    24. [24]

      XIE Y, WANG T T, ZENG H P. Construction of two new mixed-ligand coordination polymers based on 2, 2'-dimethylbiphenyl-4, 4'-dicarboxylic acid[J]. Z. Anorg. Allg. Chem., 2014, 640(8/9):  1741-1744.

    25. [25]

      YUAN S, LU W G, CHEN Y P, ZHANG Q, LIU T F, FENG D W, WANG X, QIN J S, ZHOU H C. Sequential linker installation: Precise placement of functional groups in multivariate metal-organic frameworks[J]. J. Am. Chem. Soc., 2015, 137(9):  3177-3180.

    26. [26]

      YUAN S, CHEN Y P, QIN J S, LU W G, WANG X, ZHANG Q, BOSCH M, LIU T F, LIAN X Z, ZHOU H C. Cooperative cluster metalation and ligand migration in zirconium metal-organic frameworks[J]. Angew. Chem.‒Int. Edit., 2015, 54(49):  14696-14700.

    27. [27]

      YUAN S, ZOU L F, LI H X, CHEN Y P, QIN J S, ZHANG Q, LU W G, HALL M B, ZHOU H C. Flexible zirconium metal-organic frameworks as bioinspired switchable catalysts[J]. Angew. Chem.‒Int. Edit., 2016, 55(36):  10776-10780.

    28. [28]

      PAN J D, YUAN S, DU D Y, LOLLAR C, ZHANG L L, WU M Y, YUAN D Q, ZHOU H C, HONG M C. Flexible zirconium MOFs as bromine-nanocontainers for bromination reactions under ambient conditions[J]. Angew. Chem.‒Int. Edit., 2017, 56(46):  14622-14626.

    29. [29]

      QIN J S, YUAN S, ALSALME A, ZHOU H C. Flexible zirconium MOF as the crystalline sponge for coordinative alignment of dicarboxylates[J]. ACS Appl. Mater. Interfaces, 2017, 9(39):  33408-33412.

    30. [30]

      CHEN C X, QIU Q F, CAO C C, PAN M, WANG H P, JIANG J J, WEI Z W, ZHU K L, LI G Q, SU C Y. Stepwise engineering of pore environments and enhancement of CO2/R22 adsorption capacity through dynamic spacer installation and functionality modification[J]. Chem. Commun., 2017, 53(83):  11403-11406.

    31. [31]

      DOLGOPOLOVA E A, EJEGBAVWO O A, MARTIN C R, SMITH M D, SETYAWAN W, KARAKALOS S G, HENAGER C H, LOYE H C Z, SHUSTOVA N B. Multifaceted modularity: A key for stepwise building of hierarchical complexity in actinide metal-organic frameworks[J]. J. Am. Chem. Soc., 2017, 139(46):  16852-16861.

    32. [32]

      EJEGBAVWO O A, MARTIN C R, OLORUNFEMI O A, LEITH G A, LY R T, RICE A M, DOLGOPOLOVA E A, SMITH M D, KARAKALOS S G, BIRKNER N, POWELL B A, PANDEY S, KOCH R J, MISTURE S T, LOYE H C Z, PHILLPOT S R, BRINKMAN K S, SHUSTOVA N B. Thermodynamics and electronic properties of heterometallic multinuclear actinide-containing metal-organic frameworks with "structural memory"[J]. J. Am. Chem. Soc., 2019, 141(29):  11628-11640.

    33. [33]

      PANG J D, YUAN S, QIN J S, LOLLAR C T, HUANG N, LI J L, WANG Q, WU M Y, YUAN D Q, HONG M C, ZHOU H C. Tuning the ionicity of stable metal-organic frameworks through ionic linker installation[J]. J. Am. Chem. Soc., 2019, 141(7):  3129-3136.

    34. [34]

      LI J L, YUAN S, QIN J S, PANG J D, ZHANG P, ZHANG Y M, HUANG Y Y, DRAKE H F, LIU W R, ZHOU H C. Stepwise assembly of turn-on fluorescence sensors in multicomponent metal-organic frameworks for in vitro cyanide detection[J]. Angew. Chem.‒Int. Edit., 2020, 59(24):  9319-9323.

    35. [35]

      CASTNER A T, JOHNSON B A, COHEN S M, OTT S. Mimicking the electron transport chain and active site of[FeFe] hydrogenases in one metal-organic framework: Factors that influence charge transport[J]. J. Am. Chem. Soc., 2021, 143(21):  7991-7999.

    36. [36]

      ZENG Z, WANG W, XIONG X H, ZHU N X, XIONG Y Y, WEI Z W, JIANG J J. Flexible microporous copper(Ⅱ) metal-organic framework toward the storage and separation of C1—C3 hydrocarbons in natural gas[J]. Inorg. Chem., 2021, 60(12):  8456-8460.

    37. [37]

      HANNA S L, CHHEDA S, ANDERSON R, RAY D, MALLIAKAS C D, KNAPP J G, OTAKE K I, LI P, LI P H, WANG X J, WASSON M C, ZOSEL K, EVANS A M, ROBISON L, ISLAMOGLU T, ZHANG X, DICHTEL W R, STODDART J F, GOMEZ-GUALDRON D A, GAGLIARDI L, FARHA O K. Discovery of spontaneous de-interpenetration through charged point-point repulsions[J]. Chem, 2022, 8(1):  225-242.

    38. [38]

      PARK K C, KITTIKHUNNATHAM P, LIM J, THAGGARD G C, LIU Y, MARTIN C R, LEITH G A, TOLER D J, TA A T, BIRKNER N, LEHMAN-ANDINO I, HERNANDEZ-JIMENEZ A, MORRISON G, AMOROSO J W, LOYE H C Z, DIPRETE D P, SMITH M D, BRINKMAN K S, PHILLPOT S R, SHUSTOVA N B. f-Block MOFs: A pathway to heterometallic transuranics[J]. Angew. Chem.‒Int. Edit., 2023, 62(5):  e202216349.

    39. [39]

      LIM J, PARK K C, THAGGARD G C, LIU Y, KANKANAMALAGE B K P M, TOLER D J, TA A T, KITTIKHUNNATHAM P, SMITH M D, PHILLPOT S R, SHUSTOVA N B. Friends or foes: Fundamental principles of Th-organic scaffold chemistry using Zr-analogs as a guide[J]. J. Am. Chem. Soc., 2024, 146(17):  12155-12166.

    40. [40]

      XIONG Y Y, CHEN C X, PHAM T, WEI Z W, FORREST K A, PAN M, SU C Y. Dynamic spacer installation of multifunctionalities into metal-organic frameworks for spontaneous one-step ethylene purification from a ternary C2-hydrocarbons mixture[J]. CCS Chem., 2024, 6(1):  241-254.

    41. [41]

      DOLOMANOV O V, BOURHIS L J, GILDEA R J, HOWARD J A K, PUSCHMANN H. OLEX2: A complete structure solution, refinement and analysis program[J]. J. Appl. Cryst., 2009, 42(2):  339-341.

    42. [42]

      SHELDRICK G M. A short history of SHELX[J]. Acta Crystallogr. Sect. A, 2008, A64(1):  112-122.

    43. [43]

      ALVAREZ S, ALEMANY P, CASANOVA D, CIRERA J, LLUNELL M, AVNIR D. Shape maps and polyhedral interconversion paths in transition metal chemistry[J]. Coord. Chem. Rev., 2005, 249(17/18):  1693-1708.

    44. [44]

      LIU Q, ZHANG L Y, BAO Y M, ZHANG N, ZHANG J Y, XING Y Y, DENG W, LIU Z J. Structures and catalytic oxidative coupling reaction of four Co-MOFs modified with R-isophthalic acid (R=H, OH and COOH) and trigonal ligands[J]. CrystEngComm, 2021, 23(43):  7590-7601.

    45. [45]

      CAO W W, LI H Y, TIAN L. Exploring the synthesis, structure, and properties of a 3D Mn-MOF based on 4, 6-bistriazole isophthalic acid[J]. J. Mol. Struct., 2024, 1295(2):  136721.

    46. [46]

      ZHOU C C, LIU H T, DING L, LU J, WANG S N, LI Y W. Single-crystal-to-single-crystal transformations among three Mn-MOFs containing different water molecules induced by reaction time: Crystal structures and proton conductivities[J]. Dalton Trans., 2021, 50(32):  11077-11090.

    47. [47]

      BURROWS A D, FROST C G, KANDIAH M, KEENAN L L, MAHON M F, SAVARESE T L, WARREN J E. The effect of reaction conditions on the nature of cadmium 1, 3, 5-benzenetricarboxylate metal-organic frameworks[J]. Inorg. Chim. Acta, 2011, 366(1):  303-309.

    48. [48]

      SUN E X, FANG H Y, JIANG J J, ZHU D R. Syntheses, crystal structures, Hirshfeld surface analyses and fluorescence of two binuclear complexes with unsymmetrical phenol-based compartmental ligands[J]. J. Coord. Chem., 2023, 76(7/8):  946-959.

    49. [49]

      WANG T, SONG H J, ZHUANG R, ZHU D R. Syntheses, crystal structures, Hirshfeld surface analyses and magnetic property of a new dinuclear nickel(Ⅱ) and two mononuclear copper(Ⅱ) complexes with triaryltriazoles[J]. J. Coord. Chem., 2024, 77(22/23/24):  2844-2855.

  • Figure 1  (a) trans-[CoO6] octahedron in MOF 1; (b) 2D layer consisting of trans-[CoO6] octahedron and L2- parallel to the ac plane; (c) 2D sql topological network; (d) 3D hydrogen-bonded supramolecular framework

    Symmetry codes: i 1-x, -y, 2-z; ii-x, 1-y, 1-z; iii x, 1+y, z-1; iv-x, 2-y, -z; v 1-x, -y, 1-z; vi x, y-1, z+1; vii 1-x, 1-y, 2-z; viii x, y-1, z; ix -x, 1-y, -z; x -x, 2-y, -1-z; xi x, y, z-1

    Figure 2  (a) cis-[MnO4N2] octahedron in MOF 2; (b) 2D layer consisting of Mn(Ⅱ) and L2- parallel to the ac plane; (c) 2D layers pillared by the Bipy molecules to form a 3D network; (d) cis-[MnO4N2] octahedron as a 6-connected node; (e) L2- as a 4-connected node; (f) binodal (4, 6)-connected fsc topological framework

    Symmetry codes: i 1-x, y, 1/2-z; ii 1-x, 1-y, 1-z; iii x, 1-y, z-1/2.

    Scheme 1  Coordination modes of the L2- ligands in MOFs 1 (a) and 2 (b)

    Figure 3  TGA curves of 1 (a) and 2 (b)

    Figure 4  Three-dimensional Hirshfeld surfaces of 1 and 2 mapped with dnorm along the a-axis

    Figure 5  Two-dimensional fingerprint plots for 1: (a) all, (b) H…H and (c) O…H/H…O contacts, and 2: (d) all, (e) H…H and (f) C…H/H…C contacts

    Unit: nm.

    Table 1.  Crystallographic data of MOFs 1 and 2

    Parameter 1 2
    Empirical formula C16H22CoO9 C26H20MnN2O4
    Formula weight 417.26 479.38
    Crystal system Triclinic Monoclinic
    Space group P1 C2/c
    a / nm 0.807 1(2) 1.397 5(3)
    b / nm 1.057 8(3) 1.846 4(4)
    c / nm 1.095 7(2) 0.911 4(2)
    α / (°) 85.666(2)
    β / (°) 88.563(2) 98.948(2)
    γ / (°) 83.255(2)
    V / nm3 0.926 2(1) 2.323 1(1)
    Z 2 4
    Dc / (g·cm-3) 1.496 1.371
    μ / mm-1 7.685 4.909
    F(000) 434.0 988.0
    Crystal size / mm 0.19×0.14×0.11 0.25×0.22×0.18
    θ range / (°) 4.047-66.041 3.998-67.953
    Reflection collected 9 334 15 045
    Independent reflection 3 216 (Rint=0.097 7) 2 117 (Rint=0.064 9)
    Reflection observed [I > 2σ(I)] 2 649 2 010
    Data, restraint, number of parameters 3 216, 1, 256 2 117, 0, 152
    Goodness-of-fit on F 2 1.016 1.093
    R1, wR2 [I > 2σ(I)] 0.056 8, 0.146 4 0.034 3, 0.093 8
    R1, wR2 (all data) 0.068 6, 0.153 0 0.035 7, 0.094 5
    ρ)max, (Δρ)min / (e·nm-3) 750, -590 340, -460
    下载: 导出CSV

    Table 2.  Selected bond lengths (nm) and angles (°) for MOFs 1 and 2

    1
    Co1—O1W 0.205 9(2) Co1…Co2v 0.403 6(2) Co2—O4 0.203 5(2)
    Co1—O2 0.204 6(2) Co2—O2Wii 0.222 6(2) C1—O1 0.127 2(4)
    Co1—O2W 0.222 8(2) Co2—O3W 0.207 2(2)
    O1W—Co1—O2Wi 93.91(10) O2—Co1—O2Wi 93.02(9) O4—Co2—O2Wii 92.84(9)
    O1W—Co1—O2W 86.09(10) O2i—Co1—O2 180.00(12) O4—Co2—O2Wiii 87.16(9)
    1
    O2—Co1—O1Wi 89.21(11) O3Wiv—Co2—O2Wiii 93.46(9) O4iv—Co2—O3W 89.31(11)
    O2—Co1—O2W 86.98(9) O3W—Co2—O2Wiii 86.54(9) O4iv—Co2—O4 180.00
    2
    Mn1—O1 0.216 3(2) Mn1—O2ii 0.213 4(2) Mn1—N1 0.229 3(2)
    Mn1…Mn1ii 0.4889(2)
    O1—Mn1—O1i 165.62(8) O2ii—Mn1—O1 100.84(5) N1—Mn1—N1i 89.02(8)
    O1—Mn1—N1 86.11(6) O2iii—Mn1—N1 175.32(5) O2ii—Mn1—N1 90.02(6)
    O1—Mn1—N1i 83.65(5) O2ii—Mn1—O2iii 91.37(8)
    Symmetry codes: i 1-x, -y, 2-z; ii -x, 1-y, 1-z; iii x, 1+y, z-1; iv -x, 2-y, -z; v x, y-1, z+1 for 1; i 1-x, y, 1/2-z; ii 1-x, 1-y, 1-z; iii x, 1-y, z-1/2 for 2.
    下载: 导出CSV

    Table 3.  Comparison of the dihedral angles in the mononuclear MOFs based on H2L

    MOF Coordination mode SBU Dihedral angles / (°) Ref.
    Ph/Ph rings Ph/CO2-
    1 bis(unidentate) trans-[CoO6] 84.72(10) 17.50(19), 14.04(18) This work
    2 bis(bridging bidentate): syn-syn cis-[MnO4N2] 66.18(6) 18.66(11) This work
    [Co(L)(Bipy)] bis(bridging bidentate): syn-syn cis-[CoO4N2] 66.07(16) 18.56(21) [24]
    [Zn(L)(Im)]a bis(bridging bidentate): syn-anti [ZnO2N2] 71.05(14) 15.14(28) [24]
    [Ni(H2O)2(L)(DMF)]·0.5H2O bis(unidentate) [NiO6] 83.45(18) 11.30(22) [21]
    NU-1303-3b bis(chelating bidentate) [UO2(CO2)3] 79.15(16) 14.76(29), 6.91(25) [37]
    83.96(11) 11.67(18), 3.82(22)
    76.78(98) 7.63(17), 3.78(18)
    81.97(12) 10.58(21), 2.75(27)
    61.53(94) 12.69(14), 8.19(34)
    86.87(15) 14.78(27), 7.97(22)
    71.92(20) 14.64(33), 11.20(32)
    68.36(99) 12.84(65), 4.29(34)
    89.01(16) 8.39(11), 5.67(17)
    76.37(46) 6.29(83)
    NU-1303-6b bis(chelating bidentate) [UO2(CO2)3] 89.56(10) 19.68(13), 7.43(16) [37]
    88.80(88) 8.68(18)
    a Im=imidazole; b NU=Northwestern University.
    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  70
  • HTML全文浏览量:  11
文章相关
  • 发布日期:  2025-08-10
  • 收稿日期:  2025-04-25
  • 修回日期:  2025-05-19
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章