引用本文:
岳旭, 王胜, 刘旭, 李德意, 王树东, 王建成, 郝兵元. 不同吸附剂上动态吸附-脱附挥发性有机气体性能研究[J]. 燃料化学学报,
2020, 48(1): 120-128.
Citation:
YUE Xu, WANG Sheng, LIU Xu, LI De-yi, WANG Shu-dong, WANG Jian-cheng, HAO Bing-yuan. Dynamic adsorption and desorption of volatile organic compounds on different adsorbents[J]. Journal of Fuel Chemistry and Technology,
2020, 48(1): 120-128.
Received Date:
21 October 2019 Revised Date:
02 December 2019 Available Online:
01 January 2020
Fund Project:
The project was supported by the National Key Research and Development Program of China (2016YFC0204302) and National Natural Science Foundation of China (21676267)
Abstract:
The dynamic adsorption and desorption behaviors of volatile organic compounds (VOCs, including n-hexane, toluene and ethyl acetate) on various adsorbents (including activated carbon and 5A, NaY, 13X, ZSM-5 (SiO2/Al2O3=27 and 300), Hβ and MCM-41 zeolites) were investigated by gas chromatography and thermogravimetic (TG) analysis; the effect of type, volumetric space velocity (SV) and concentration of VOC on the adsorption capacities was considered. The results show that more VOCs can be adsorbed at higher SV and concentration of VOCs to a certain extent. Activated carbon exhibits the largest adsorption capacity per unit mass towards the VOCs considered in this work, whereas the 13X and NaY zeolites display larger adsorption capacity per unit volume than other adsorbents.
YANG C, MIAO G, PI Y, XIA Q, WU J, LI Z, XIAO J. Abatement of various types of VOCs by adsorption/catalytic oxidation:A review[J]. Chem Eng J,
2019, 370:
1128-1153.
doi: 10.1016/j.cej.2019.03.232
[2]
王志伟, 裴多斐, 于丽平. VOCs控制与处理技术综述[J]. 环境与发展,
2017,29,(1): 1-4.
WANG Zhi-wei, PEI Duo-fei, YU Li-ping. A review of the control and treatment techniques of volatile organic compounds[J]. Environ Dev,
2017, 29(1):
1-4.
[3]
张永明, 邓娟, 梁健. 工业源VOCs末端治理技术浅析及减排展望[J]. 环境影响评价,
2018,40,(2): 46-50.
ZHANG Yong-ming, DENG Juan, LIANG jian. The analysis and prospect of industrial VOCs terminal treatment techniques[J]. Environ Impact Assess,
2018, 40(2):
46-50.
[4]
李照海, 羌宁, 刘涛, 何娇, 曹翌奇, 陈昊坤. 活性炭和沸石分子筛处理非稳定排放VOCs气体的性能比较[J]. 环境工程学报,
2017,11,(5): 2933-2939.
LI Zhao-hai, QIANG Ning, LIU Tao, HE Jiao, CAO Yi-qi, CHEN Hao-kun. Competitive adsorption and desorption of unsteady emission VOCs on activated carbon and zeolites[J]. Chin J Environ Eng,
2017, 11(5):
2933-2939.
[5]
THOMMES M, KANEKO K, NEIMARK A, OLIVIER J, RODRIGUEZ-REINOSO F, ROUQUEROL J, SING K. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure Appl Chem,
2015, 87(9/10):
1051-1069.
[6]
GOKEL G W. Dean's Handbook of Organic Chemistry[M]. 2nd ed. New York:McGraw-Hill, 2004:415-454.
[7]
LI J R, KUPPLER R J, ZHOU H C. Selective gas adsorption and separation in metal-organic frameworks[J]. Chem Soc Rev,
2009, 38(5):
1477-1504.
doi: 10.1039/b802426j
[8]
李守信, 陈青松, 罗鑫, 张智文, 曾华英. 吸附法处理VOCs脱附温度的选择[J]. 中国环保产业,
2018(3): 48-50.
doi: 10.3969/j.issn.1006-5377.2018.03.012LI Shou-xin, CHEN Qing-song, LUO Xin, ZHANG Wen-zhi, ZENG hua-ying. Determination on desorbing temperature of VOCs treated by adsorption method[J]. China Environ Prot Ind,
2018, (3):
48-50.
doi: 10.3969/j.issn.1006-5377.2018.03.012
[9]
EVERETT D H, POWL J C. Adsorption in slit-like and cylindrical micropores in the henry's law region. A model for the microporosity of carbons[J]. J Chem Soc, Faraday Trans I,
1976, 72:
619-636.
[10]
黄海凤, 戎文娟, 顾勇义, 常人芹, 卢晗锋. ZSM-5沸石分子筛吸附-脱附VOCs的性能研究[J]. 环境科学学报,
2014,34,(12): 3144-3151.
HUANG Hai-feng, RONG Wen-juan, GU Yong-yi, CHANG Ren-qin, LU Han-feng. Adsorption and desorption of VOCs on the ZSM-5 zeolite[J]. Acta Sci Circumst,
2014, 34(12):
3144-3151.
[11]
杨祖保(美).吸附剂原理与应用[M].北京:高等教育出版社, 2010:8-112.Ralph T Yang. Adsorbents Fundamentals and Applications[M]. Beijing:Higher Education Press, 2010:8-112.
[12]
SUHAS , GUPTA V K, CARROTT P J M, SINGH R, CHAUDHARY M, KUSHWAHA S. Cellulose:A review as natural, modified and activated carbon adsorbent[J]. Bioresour Technol,
2016, 216:
1066-1076.
doi: 10.1016/j.biortech.2016.05.106