CCS Chemistry:金黄色葡萄球菌醛基脱氢酶是如何识别特异性底物的?
[J]. CCS Chemistry, 2020, 2(0): 946-954. doi: 10.31635/ccschem.020.202000219Citation:
CCS Chemistry:金黄色葡萄球菌醛基脱氢酶是如何识别特异性底物的?
[J]. CCS Chemistry, 2020, 2(0): 946-954. doi: 10.31635/ccschem.020.202000219CCS Chemistry:金黄色葡萄球菌醛基脱氢酶是如何识别特异性底物的?
中山大学夏炜、香港大学孙红哲课题组通过解析金黄色葡萄球菌醛基脱氢酶纯蛋白以及复合物晶体结构,发现其特有的“C-helix”结构域在结合特异性底物过程中发生的构象变化,提出了金黄色葡萄球菌醛基脱氢酶识别特异性底物的分子门控机制,并通过一系列生化实验辅助验证。
金黄色葡萄球菌是一种常见人类病原菌,可引起一系列感染性疾病,由于抗生素的滥用,产生了许多耐药性的金黄色葡萄球菌,而相对于开发新的抗生素,发展新的抗感染疗法对于对抗病毒感染更为有效。超过90%的金黄色葡萄球菌临床分离株会产生一种金黄色的含有30个碳(C30)的长链类胡萝卜素分子,称为葡萄球菌黄素,该色素可作为抗氧化剂提高细菌对于活性氧的耐受能力。因此,阻断其生物合成途径是一项重要的工作。
葡萄球菌黄素的生物合成路径需要一系列催化酶的参与(图1)。其中,醛基脱氢酶(SaAldH)是最近被发现的参与色素合成的酶类,其功能是催化长链不饱和醛4,4’- diaponeurosporen-4-al生成对应的羧酸。近期,中山大学夏炜课题组以及香港大学孙红哲课题组报道了SaAldH纯蛋白以及其与特异性底物复合物的晶体结构,在分子层面揭示了SaAldH识别特异性底物——多不饱和长碳链脂肪醛的门控机制。
图1 葡萄球菌黄素合成通路示意图
通过对SaAldH和特异性底物之间的相互作用进行分析,作者们发现特异性底物与SaAldH底物结合通道中的氨基酸残基形成广泛的疏水相互作用。另外,酶序列上Y116与底物的2-甲基形成π–σ相互作用,F457与底物末端的两个甲基形成疏水相互作用,暗示着“C-helix”同时也参与了对特异性底物的识别(图3)。
图3 SaAldH与其特异性底物相互作用分析
最后,作者们通过体外酶活实验、过氧化氢耐受实验以及巨噬细胞吞噬实验对关键氨基酸位点进行验证,证实结构中看到的关键性位点确实参与了特异性底物的识别(图4)。
图4 关键氨基酸参与特异性底物识别的生化实验验证
此项研究得到了国家自然科学基金、香港研究资助局、中国教育部以及中央高校基础研究经费的资助。该工作以research article的形式发表在CCS Chemistry,并在官网“Just Published”栏目上线。
文章详情:
Structural Insight into the Substrate Gating Mechanism by Staphylococcus aureus Aldehyde Dehydrogenase
Xuan Tao , Zhemin Zhang , Xiao Zhang , Hongyan Li, Hongzhe Sun *, Zong-Wan Mao& Wei Xia *
Citation:CCS Chem. 2020, 2, 946–954
Link:https://doi.org/10.31635/ccschem.020.202000219
English
CCS Chemistry:金黄色葡萄球菌醛基脱氢酶是如何识别特异性底物的?
中山大学夏炜、香港大学孙红哲课题组通过解析金黄色葡萄球菌醛基脱氢酶纯蛋白以及复合物晶体结构,发现其特有的“C-helix”结构域在结合特异性底物过程中发生的构象变化,提出了金黄色葡萄球菌醛基脱氢酶识别特异性底物的分子门控机制,并通过一系列生化实验辅助验证。
金黄色葡萄球菌是一种常见人类病原菌,可引起一系列感染性疾病,由于抗生素的滥用,产生了许多耐药性的金黄色葡萄球菌,而相对于开发新的抗生素,发展新的抗感染疗法对于对抗病毒感染更为有效。超过90%的金黄色葡萄球菌临床分离株会产生一种金黄色的含有30个碳(C30)的长链类胡萝卜素分子,称为葡萄球菌黄素,该色素可作为抗氧化剂提高细菌对于活性氧的耐受能力。因此,阻断其生物合成途径是一项重要的工作。
葡萄球菌黄素的生物合成路径需要一系列催化酶的参与(图1)。其中,醛基脱氢酶(SaAldH)是最近被发现的参与色素合成的酶类,其功能是催化长链不饱和醛4,4’- diaponeurosporen-4-al生成对应的羧酸。近期,中山大学夏炜课题组以及香港大学孙红哲课题组报道了SaAldH纯蛋白以及其与特异性底物复合物的晶体结构,在分子层面揭示了SaAldH识别特异性底物——多不饱和长碳链脂肪醛的门控机制。
图1 葡萄球菌黄素合成通路示意图
通过对SaAldH和特异性底物之间的相互作用进行分析,作者们发现特异性底物与SaAldH底物结合通道中的氨基酸残基形成广泛的疏水相互作用。另外,酶序列上Y116与底物的2-甲基形成π–σ相互作用,F457与底物末端的两个甲基形成疏水相互作用,暗示着“C-helix”同时也参与了对特异性底物的识别(图3)。
图3 SaAldH与其特异性底物相互作用分析
最后,作者们通过体外酶活实验、过氧化氢耐受实验以及巨噬细胞吞噬实验对关键氨基酸位点进行验证,证实结构中看到的关键性位点确实参与了特异性底物的识别(图4)。
图4 关键氨基酸参与特异性底物识别的生化实验验证
此项研究得到了国家自然科学基金、香港研究资助局、中国教育部以及中央高校基础研究经费的资助。该工作以research article的形式发表在CCS Chemistry,并在官网“Just Published”栏目上线。
文章详情:
Structural Insight into the Substrate Gating Mechanism by Staphylococcus aureus Aldehyde Dehydrogenase
Xuan Tao , Zhemin Zhang , Xiao Zhang , Hongyan Li, Hongzhe Sun *, Zong-Wan Mao& Wei Xia *
Citation:CCS Chem. 2020, 2, 946–954
Link:https://doi.org/10.31635/ccschem.020.202000219
-
CCS Chemistry:POSS树枝状聚合物自组装:刚柔相济、始可有成
CCS Chemistry, 2020, 2(0): 1093-1104.
-
CCS Chemistry:嵌段共聚物自组装成 “三明治”二维有机材料,实现纳米级压力传感功能
CCS Chemistry, 2020, 2(0): 1399-1409.
-
CCS Chemistry:颜徐州、鲍哲南: 你的皮肤可能是一片SPMs
CCS Chemistry, 2019, 1(4): 431-447.
-
Syntheses, Crystal Structures and Fluorescence Properties of Two Mononuclear Copper(II) Compounds
结构化学, 2016, 35(12): 1885-1893.
-
CCS Chemistry | 接触-消融,给锂电极穿上保护“镓”
CCS Chemistry, 2020, 2(0): 686-695.
-
CCS Chemistry:工作高效不疲劳,只须让催化剂动起来
CCS Chemistry, 2020, 2(1): 31-41.
-
CCS Chemistry:静电组装导向聚合- 聚电解质纳米凝胶量化制备新策略
CCS Chemistry, 2020, 2(0): 1016-1025.
-
CCS Chemistry:科学新发现:二芳基乙烯-卓越的单光子吸收上转换发光材料
CCS Chemistry, 2020, 2(0): 665-674.
-
CCS Chemistry:高氮含量,孔径可控,多级自组装合成优越电容器性能N掺杂介孔碳材料
CCS Chemistry, 2020, 2(2): 870-881.
-
CCS Chemistry:金黄色葡萄球菌醛基脱氢酶是如何识别特异性底物的?
CCS Chemistry, 2020, 2(0): 946-954.