CCS Chemistry:科学新发现:二芳基乙烯-卓越的单光子吸收上转换发光材料

引用本文:  

CCS Chemistry:科学新发现:二芳基乙烯-卓越的单光子吸收上转换发光材料

[J]. CCS Chemistry, 2020, 2(0): 665-674. doi: 10.31635/ccschem.020.202000227
shu

Citation:   

CCS Chemistry:科学新发现:二芳基乙烯-卓越的单光子吸收上转换发光材料

[J]. CCS Chemistry, 2020, 2(0): 665-674. doi: 10.31635/ccschem.020.202000227
shu

CCS Chemistry:科学新发现:二芳基乙烯-卓越的单光子吸收上转换发光材料

摘要:

   国家纳米科学中心段鹏飞课题组发现一类新型的具有单光子吸收上转换发光性能的化合物:光开关型发光二芳基乙烯。这类化合物可以实现紫外/可见光调控的闭环/开环反应,在闭环状态具有高效的发光性能。同时发现闭环状态分子具有活跃的基态高振动能级,可以实现基态高振动能级到激发态的跃迁,从而发出高能量的光子,可以真正意义上实现单一光子吸收的上转换发光。



   光子频率上转换(Photon upconversion, UC)是典型的光子融合过程,也叫反斯托克斯位移,通常是吸收低能量的两个或多个光子发出高能量短波长光的过程,即被长波长光激发时会发出短波长光,在太阳能电池、显示器设备、人工光合作用、生物成像领域有着潜在的应用。近年来,有机化合物体系中的光子频率上转换技术主要包括双光子吸收上转换(TPA),和基于三重态-三重态湮灭的上转换(TTA)等。在有机体系中,TPA上转换需要皮秒或飞秒激光器作为激发光源,激发光能量密度高达MW/cm2数量级,而且上转换效率很低(图1b);而TTA上转换具有激发光能量密度低、上转换效率高、以及激发和发射波长可调等优势,但是TTA上转换体系由于涉及到长寿命的三重态,对空气中的氧气非常敏感,往往需要严格除氧,并且固态TTA上转换效率一般都非常低(图1c)。
   除此之外,还有一种更具优势的上转换发光机制——单光子吸收上转换。在有机体系中,其发生源于发光分子的基态高振动能级到激发态的跃迁,声子补偿机制被认为是基态高振动能级能够向激发态跃迁的主要驱动力。基于这种机理的上转换发光体系不需要除氧,单光子激发,发光效率高,所需激发光能量密度低(图1a),在各种上转换发光机制中极具优势。但在有机体系中,这类上转换材料非常匮乏,鲜有报道。



图1



图2


   近期,国家纳米科学中心段鹏飞课题组发现一类新型的单光子吸收上转换发光的材料——光开关型发光二芳基乙烯。该类分子具有典型的光照开闭环性质,在开环状态不具有发光性质,而且在可见光区没有吸收。紫外光照可以促使开环态到闭环态的转变,在可见光产生较强的吸收,同时还表现出强的发光性质。同时,闭环态在可见光照射下,可以引发开环反应,实现发光的开关循环(图2)。研究人员发现,当使用635 nm激光器照射样品的时候,能够观察到黄色的发光,其发射光谱与普通发光光谱一致。这种长波长激发,短波长发射的现象,是典型的上转换发光(反斯托克斯发光)(图3)。



图3


   作者研究发现上转换发光强度与激发光强度呈线性关系(图3),即单光子过程,进而排除了TPA及TTA的上转换发光机制。通过发光寿命测试也排除了热延迟荧光(TADF)机理(图4)。由于激发光与发射光具有较大的能量差(即反斯托克斯位移0.23 eV),跃迁过程不可能来自于基态0振动能级到激发态的跃迁,而只可能是基态高振动能级在吸收635 nm光子之后达到激发态,进而发射高能量的光。通过Arrhenius公式对变温上转换发光数据的拟合,得到的“活化能”约为0.2 eV,与反斯托克斯位移相近。可以推断其发光机制源于高振动能级的跃迁(图4)。这种高振动能级的跃迁在可见吸收光谱上表现出较长的Urbach带尾吸收。通过激发光谱发现单光子吸收带尾可延伸至700 nm。研究人员测试了680 nm激光器激发的上转换发光情况,也观察到了明显的上转换发光,反斯托克斯位移达0.36 eV。



图4

   研究人员通过不同溶剂中的上转换发光对照进一步探讨了单光子吸收上转换发光的机理(图5)。由于这类材料具有分子内电荷转移的性质,随着溶剂极性的增大,其发光峰红移并且发光效率显著降低。作者比较了甲苯和二甲基亚砜(DMSO)作为溶剂时的发光情况。研究发现使用360 nm激光激发时,甲苯溶液的发光要强于DMSO。由于甲苯和DMSO溶液在360 nm处具有相似的吸光系数,甲苯溶液强的发光是由于其更高的发光量子效率造成的。但是使用635 nm激光激发的时候,则DMSO溶液发光更强。这是由于在DMSO中,发光峰能级与激发波长之间的能级差变小了,从而使得上转换发光更容易发生。最后,作者通过参比法评价了上转换发光效率,得到了13%的上转换发光效率。



图5


   更重要的是,二芳基乙烯作为一类性能优异的光致变色材料,具有优良的光稳定性和耐疲劳性。作者通过紫外光/可见光的交替照射,可以实现单光子上转换发光的开关调控,经过多次循环之后,上转换发光还能保持良好的可重复性(图3),这为此类材料的实际应用提供了必备的条件。上述发现及研究成果以Communication的形式发表在CCS Chemistry,并已在官网“Just Published”栏目上线。


Citation:CCS Chem. 2020, 2, 665–674











亮点评述

/

返回文章