
Citation: Fang Guan, Xiaomin Zhang, Yuefeng Song, Yingjie Zhou, Guoxiong Wang, Xinhe Bao. Effect of Gd0.2Ce0.8O1.9 nanoparticles on the oxygen evolution reaction of La0.6Sr0.4Co0.2Fe0.8O3-δ anode in solid oxide electrolysis cell[J]. Chinese Journal of Catalysis, 2018, 39(9): 1484-1492. doi: 10.1016/S1872-2067(18)63118-3

Gd0.2Ce0.8O1.9纳米颗粒对固体氧化物电解池La0.6Sr0.4Co0.2Fe0.8O3-δ阳极析氧反应的影响
La0.6Sr0.4Co0.2Fe0.8O3-δ(LSCF)因具有较高的混合离子-电子导电性而被用作SOEC阳极材料,但受LSCF-气体两相界面的限制,其OER性能较低.研究表明,LSCF-掺杂的CeO2-气体所构成的三相界面相比于LSCF-气体两相界面具有更高的电化学反应活性,即OER反应更易在三相界面进行.因此,本文将Gd0.2Ce0.8O1.9(GDC)纳米颗粒浸渍到SOEC LSCF阳极来提高其OER活性,考察了纳米颗粒浸渍量(3,5,10和20 wt%)对SOEC电化学性能的影响.结果表明,SOEC的电化学性能随浸渍量的增加而逐渐升高,当GDC纳米颗粒浸渍量为10wt%时(10GDC/LSCF),SOEC的电化学性能达到最高,在800℃和1.6V的电流密度为0.555A cm-2,是LSCF阳极SOEC性能的1.32倍.继续增加浸渍量到20wt%,电化学性能反而开始下降.电化学阻抗谱测试结果表明,GDC纳米颗粒的加入减小了SOEC的极化电阻.对应的弛豫时间分布函数解析结果表明10GDC/LSCF阳极上的OER由四个基元反应构成.电镜和O2-程序升温脱附结果表明,GDC纳米颗粒的加入显著增加了10GDC/LSCF阳极三相界面和表面氧空位的数量以及体相氧的流动性,从而促进了OER四个基元反应的反应速率,降低了这几个过程的极化电阻,因而降低了OER反应的极化电阻,提高了SOEC电还原CO2的电化学性能.
-
关键词:
- Gd0.2Ce0.8O1.9纳米颗粒
- / La0.6Sr0.4Co0.2Fe0.8O3-δ阳极
- / 析氧反应
- / 三相界面
- / 固体氧化物电解池
English
Effect of Gd0.2Ce0.8O1.9 nanoparticles on the oxygen evolution reaction of La0.6Sr0.4Co0.2Fe0.8O3-δ anode in solid oxide electrolysis cell
-
-
[1] G. P. Peters, C. Le Quéré, R. M. Andrew, J. G. Canadell, P. Friedlingstein, T. Ilyina, R. B. Jackson, F. Joos, J. I. Korsbakken, G. A. McKinley, S. Sitch, P. Tans, Nature Clim. Change, 2017, 7, 848-850.
-
[2] Y. Zheng, J. Wang, B. Yu, W. Zhang, J. Chen, J. Qiao, J. Zhang, Chem. Soc. Rev., 2017, 46, 1427-1463.
-
[3] X. Zhang, Y. Song, G. Wang, X. Bao, J. Energy Chem., 2017, 26, 839-853.
-
[4] Q. Fu, C. Mabilat, M. Zahid, A. Brisse, L. Gautier, Energy Environ. Sci., 2010, 3, 1382-1397.
-
[5] J. Wu, X. D. Zhou, Chin. J. Catal., 2016, 37, 999-1015.
-
[6] J. Kong, W. Cheng, Chin. J. Catal., 2017, 38, 951-969.
-
[7] Y. Huang, M. Zhang, P. Liu, F. Cheng, L. Wang, Chin. J. Catal., 2016, 37, 1249-1256.
-
[8] X. Leng, K. H. Wu, B. J. Su, L. Y. Jang, I. R. Gentle, D. W. Wang, Chin. J. Catal., 2017, 38, 1021-1027.
-
[9] L. Cao, S. Jiang, G. Zhang, X. Tang, X. Qin, Z. Shao, B. Yi, Chin. J. Catal., 2017, 38, 1196-1206.
-
[10] Y. Song, X. Zhang, Y. Zhou, Q. Jiang, F. Guan, H. Lv, G. Wang, X. Bao, Energy Storage Mater., 2018, 13, 207-214.
-
[11] O. A. Marina, L. R. Pederson, M. C. Williams, G. W. Coffey, K. D. Meinhardt, C. D. Nguyen, E. C. Thomsen, J. Electrochem. Soc., 2007, 154, B452-B459.
-
[12] B. Hu, Y. Wang, C. Xia, J. Power Sources, 2014, 269, 180-188.
-
[13] Q. Xu, D. P. Huang, W. Chen, J. H. Lee, H. Wang, R. Z. Yuan, Scripta Mater., 2004, 50, 165-170.
-
[14] W. Liu, Z. Zhao, B. Tu, D. Cui, D. Ou, M. Cheng, Chin. J. Catal., 2015, 36, 502-508.
-
[15] X. Zhang, Y. Song, F. Guan, Y. Zhou, H. Lv, G. Wang, X. Bao, J. Catal., 2018, 359, 8-16.
-
[16] E. Bucher, W. Sitte, G. B. Caraman, V. A. Cherepanov, T. V. Aksenova, M. V. Ananyev, Solid State Ionics, 2006, 177, 3109-3115.
-
[17] P. Zeng, R. Ran, Z. Chen, H. Gu, Z. Shao, J. C. Diniz Dacosta, S. Liu, J. Membr. Sci., 2007, 302, 171-179.
-
[18] A. Mineshige, J. Izutsu, M. Nakamura, K. Nigaki, J. Abe, M. Kobune, S. Fujii, T. Yazawa, Solid State Ionics, 2005, 176, 1145-1149.
-
[19] R. Dinamarca, X. Garcia, R. Jimenez, J. L. G. Fierro, G. Pecchi, Mater. Res. Bull., 2016, 81, 134-141.
-
[20] K. Wang, L. Qian, L. Zhang, H. Liu, Z. Yan, Catal. Today, 2010, 158, 423-426.
-
[21] B. Levasseur, S. Kaliaguine, J. Solid State Chem., 2008, 181, 2953-2963.
-
[22] Y. Tao, S. D. Ebbesen, M. B. Mogensen, J. Electrochem. Soc., 2014, 161, F337-F343.
-
[23] Y. Tao, S. D. Ebbesen, M. B. Mogensen, J. Power Sources, 2016, 328, 452-462.
-
[24] B. Liu, H. Muroyama, T. Matsui, K. Tomida, T. Kabata, K. Eguchi, J. Electrochem. Soc., 2010, 157, B1858-B1864.
-
[25] A. Leonide, B. Rüger, A. Weber, W. A. Meulenberg, E. Ivers-Tiffée, J. Electrochem. Soc., 2010, 157, B234-B239.
-
[26] X. Zhang, W. Wu, Z. Zhao, B. Tu, D. Ou, D. Cui, M. Cheng, Catal. Sci. Technol., 2016, 6, 4945-4952.
-
[27] X. J. Chen, K. A. Khor, S. H. Chan, J. Power Sources, 2003, 123, 17-25.
-
[28] J. D. Kim, G. D. Kim, J. W. Moon, Y. Park, W. H. Lee, K. Kobayashi, M. Nagai, C. E. Kim, Solid State Ionics, 2001, 143, 379-389.
-
[29] K. Asano, D. Klotz, J. Hayd, J. Szasz, E. Ivers-Tiffee, J. Electrochem. Soc., 2014, 161, F940-F943.
-
[30] J. Yan, Z. Zhao, L. Shang, D. Ou, M. Cheng, J. Power Sources, 2016, 319, 124-130.
-
-

计量
- PDF下载量: 3
- 文章访问数: 605
- HTML全文浏览量: 89