金属有机骨架及其复合材料在分离领域中的应用进展

张晓琼 汪彤 王培怡 姚伟 丁明玉

引用本文: 张晓琼,  汪彤,  王培怡,  姚伟,  丁明玉. 金属有机骨架及其复合材料在分离领域中的应用进展[J]. 色谱, 2016, 34(12): 1176-1185. doi: 10.3724/SP.J.1123.2016.08018 shu
Citation:  ZHANG Xiaoqiong,  WANG Tong,  WANG Peiyi,  YAO Wei,  DING Mingyu. Application of metal-organic frameworks and their composites in separation[J]. Chinese Journal of Chromatography, 2016, 34(12): 1176-1185. doi: 10.3724/SP.J.1123.2016.08018 shu

金属有机骨架及其复合材料在分离领域中的应用进展

  • 基金项目:

    国家科技支撑计划课题项目(2015BAK16B00);国家自然科学基金项目(21575076);国家自然科学基金创新团队项目(21621003;北京市科委科研项目(D161100002116001);北京市财政项目(PXM2016_178304_000026,PXM2016_178304_000027).

摘要: 金属有机骨架(MOFs)是一类由无机金属离子与有机配体自组装形成的新型有机-无机杂化多孔材料,因具有比表面积超高、结构多样、热稳定性良好、孔道尺寸和性质可调等优势,在分离领域表现出重要的应用价值。然而,采用传统方法制备的MOFs多为粒径在微米或亚微米尺度的晶体,且颗粒形貌不规则,因此限制了MOFs在样品前处理和色谱固定相等领域的应用和发展。构建基于MOFs的复合材料是弥补MOFs应用缺陷的一项有效措施,有望在保留MOFs优越的分离特性的同时,引入基体材料的特定性能。该文简要综述了近年来MOFs及其复合材料在吸附、样品前处理和色谱固定相等分离领域中的应用进展,并对MOFs在分离科学中的应用前景做出展望。

English

    1. [1] Yaghi O M, O'Keeffe M, Ockwig N W, et al. Nature, 2003, 423(6941):705

    2. [2] Kitagawa S, Kitaura R, Noro S. Angew Chem Int Ed, 2004, 43(18):2334

    3. [3] Ferey G. Chem Soc Rev, 2008, 37(1):191

    4. [4] Murray L J, Dinca M, Long J R. Chem Soc Rev, 2009, 38(5):1294

    5. [5] Li J R, Sculley J, Zhou H C. Chem Rev, 2012, 112(2):869

    6. [6] Horcajada P, Gref R, Baati T, et al. Chem Rev, 2012, 112(2):1232

    7. [7] Van de Voorde B, Bueken B, Denayer J, et al. Chem Soc Rev, 2014, 43(16):5766

    8. [8] Yang C X, Yan X P. Chinese Journal of Analytical Chemistry, 2013, 41(9):1297 杨成雄, 严秀平. 分析化学, 2013, 41(9):1297

    9. [9] Furukawa H, Ko N, Go Y B, et al. Science, 2010, 329(5990):424

    10. [10] Eddaoudi M, Kim J, Rosi N, et al. Science, 2002, 295(5554):469

    11. [11] Caskey S R, Wong-Foy A G, Matzger A J. J Am Chem Soc, 2008, 130(33):10870

    12. [12] Zhou W, Wu H, Yildirim T. J Am Chem Soc, 2008, 130(46):15268

    13. [13] Vermoortele F, Ameloot R, Vimont A, et al. Chem Commun, 2011, 47(5):1521

    14. [14] Zlotea C, Phanon D, Mazaj M, et al. Dalton Trans, 2011, 40(18):4879

    15. [15] Gu Z Y, Yan X P. Angew Chem Int Ed, 2010, 49(8):1477

    16. [16] Tanabe K K, Cohen S M. Angew Chem Int Ed, 2009, 48(40):7424

    17. [17] Cohen S M. Chem Rev, 2012, 112(2):970

    18. [18] Hwang Y K, Hong D Y, Chang J S, et al. Angew Chem Int Ed, 2008, 47(22):4144

    19. [19] Fu Y Y, Yan X P. Progress in Chemistry, 2013, 25(2/3):221 付艳艳, 严秀平. 化学进展, 2013, 25(2/3):221

    20. [20] Zhu Q L, Xu Q. Chem Soc Rev, 2014, 43(16):5468

    21. [21] Aijaz A, Akita T, Tsumori N, et al. J Am Chem Soc, 2013, 135(44):16356

    22. [22] Ke F, Zhu J, Qiu L G, et al. Chem Commun, 2013, 49(13):1267

    23. [23] Zhan W, Kuang Q, Zhou J, et al. J Am Chem Soc, 2013, 135(5):1926

    24. [24] Jo C, Lee H J, Oh M. Adv Mater, 2011, 23(15):1716

    25. [25] Fu Y Y, Yang C X, Yan X P. Chem Eur J, 2013, 19(40):13484

    26. [26] Taylor-Pashow K M, Rocca J D, Xie Z, et al. J Am Chem Soc, 2009, 131(40):14261

    27. [27] Qian D, Lei C, Hao G, et al. ACS Appl Mater Interfaces, 2012, 4(11):6125

    28. [28] De Oliveira C A, Da Silva F F, Jimenez G C, et al. Chem Commun, 2013, 48(58):6486

    29. [29] Yang S J, Choi J Y, Chae H K, et al. Chem Mater, 2009, 21(9):1893

    30. [30] Anbia M, Hoseini V. Chem Eng J, 2012, 191:326

    31. [31] Ge L, Wang L, Rudolph V, et al. RSC Adv, 2013, 3(47):25360

    32. [32] Petit C, Bandosz T J. Adv Mater, 2009, 21(46):4753

    33. [33] Petit C, Bandosz T J. Adv Funct Mater, 2010, 20(1):111

    34. [34] Petit C, Bandosz T J. Adv Funct Mater, 2011, 21(11):2108

    35. [35] Petit C, Mendoza B, Bandosz T J. Chemphyschem, 2010, 11(17):3678

    36. [36] Zhou X, Huang W, Shi J, et al. J Mater Chem A, 2014, 2(13):4722

    37. [37] Li L, Liu X L, Geng H Y, et al. J Mater Chem A, 2013, 1(35):10292

    38. [38] Li L, Liu X L, Gao M, et al. J Mater Chem A, 2014, 2(6):1795

    39. [39] Hermannsdörfer J, Friedrich M, Miyajima N, et al. Angew Chem Int Ed, 2012, 51(46):11473

    40. [40] Jiang H L, Lin Q P, Akita T, et al. Chem Eur J, 2011, 17(1):78

    41. [41] Lim D W, Yoon J W, Ryu K Y, et al. Angew Chem Int Ed, 2012, 124(39):9952

    42. [42] Aijaz A, Karkamkar A, Choi Y J, et al. J Am Chem Soc, 2012, 134(34):13926

    43. [43] Sugikawa K, Nagata S, Furukawa Y, et al. Chem Mater, 2013, 25(13):2565

    44. [44] Wang W, Li Y, Zhang R, et al. Catal Commun, 2011, 12(10):875

    45. [45] Lu G, Li S, Guo Z, et al. Nat Chem, 2012, 4(4):310

    46. [46] Liu Q, Low Z X, Li L, et al. J Mater Chem A, 2013, 1(38):11563

    47. [47] Chen X, Ding N, Zang H, et al. J Chromatogr A, 2013, 1304:241

    48. [48] Zhang Y, Lan D, Wang Y, et al. Physica E, 2011, 43(6):1219

    49. [49] Uemura T, Kadowaki Y, Kim C R, et al. Chem Mater, 2011, 23(7):1736

    50. [50] Liu N, Yao Y, Cha J J, et al. Nano Res, 2012, 5(2):109

    51. [51] Seo Y K, Yoon J W, Lee U H, et al. Micropor Mesopor Mater, 2012, 155:75

    52. [52] Zhang X, Han Q, Ding M. RSC Adv, 2015, 5(2):1043

    53. [53] Xing L, Zheng H, Cao Y, et al. Adv Mater, 2012, 24(48):6433

    54. [54] Li Z Q, Wang A, Guo C Y, et al. Dalton Trans, 2013, 42(38):13948

    55. [55] Lu G, Farha O K, Kreno L E, et al. Adv Mater, 2011, 23(38):4449

    56. [56] Schwab M G, Senkovska I, Rose M, et al. Adv Eng Mater, 2008, 10(12):1151

    57. [57] Küsgens P, Zgaverdea A, Fritz H G, et al. J Am Chem Soc, 2010, 93(9):2476

    58. [58] Ramos-Fernandez E V, Garcia-Domingos M, Juan-Alcañiz J, et al. Appl Catal A Gen, 2011, 391(1):261

    59. [59] Yang S, Ye F, Lv Q, et al. J Chromatogr A, 2014, 1360:143

    60. [60] Zhao D, Tan S, Yuan D, et al. Adv Mater, 2011, 23(1):90

    61. [61] Rowe M D, Thamm D H, Kraft S L, et al. Biomacromolecules, 2009, 10(4):983

    62. [62] Imaz I, Hernando J, Ruiz-Molina D, et al. Angew Chem Int Ed, 2009, 48(13):2325

    63. [63] Buso D, Jasieniak J, Lay M D H, et al. Small, 2012, 8(1):80

    64. [64] Jin S, Son H J, Farha O K, et al. J Am Chem Soc, 2013, 135(3):955

    65. [65] Saha S, Das G, Thote J, et al. J Am Chem Soc, 2014, 136(42):14845

    66. [66] Furukawa S, Hirai K, Nakagawa K, et al. Angew Chem Int Ed, 2009, 48(10):17660

    67. [67] Gadzikwa T, Farha O K, Malliakas C D, et al. J Am Chem Soc, 2009, 131(38):13613

    68. [68] Ren J, Musyoka N M, Langmi H W, et al. Int J Hydrogen Energ, 2014, 39(27):14912

    69. [69] Kwon H T, Jeong H K, Lee A S, et al. J Am Chem Soc, 2015, 137(38):12304

    70. [70] Bandosz T J, Petit C. J Colloid Interf Sci, 2009, 338(2):329

    71. [71] Yaghi O M, Li G M, Li H L. Nature, 1995, 378(6558):703

    72. [72] Plabst M, McCusker L B, Bein T. J Am Chem Soc, 2009, 131(50):18112

    73. [73] Zhao X, Bu X, Wu T, et al. Nat Commun, 2013, 4:2344

    74. [74] Liu B, Wu W P, Hou L, et al. Chem Commun, 2014, 50(63):8731

    75. [75] Chen B L, Wang L B, Zapata F, et al. J Am Chem Soc, 2008, 130(21):6718

    76. [76] Maes M, Vermoortele F, Alaerts L, et al. J Am Chem Soc, 2010, 132(43):15277

    77. [77] Seo J S, Whang D, Lee H, et al. Nature, 2000, 404(6781):982

    78. [78] Qi X Y, Li X J, Bai Y, et al. Chinese Journal of Chromato-graphy, 2016, 34(1):10 祁晓月, 李先江, 白玉, 等. 色谱, 2016, 34(1):10

    79. [79] Zhang M, Pu Z Y, Chen X L, et al. Chem Commun, 2013, 49(45):5201

    80. [80] Bonnefoy J, Legrand A, Quadrelli E A, et al. J Am Chem Soc, 2015, 137(29):9409

    81. [81] Hasan Z, Jhung S H. J Hazard Mater, 2015, 283:329

    82. [82] Hou Y, Sun J, Zhang D, et al. Chem Eur J, 2016, 22(18):6345

    83. [83] Khan N A, Jung B K, Hasan Z, et al. J Hazard Mater, 2015, 282:194

    84. [84] Gu Z Y, Chen Y J, Jiang J Q, et al. Chem Commun, 2011, 47(16):4787

    85. [85] Zhao M, Deng C, Zhang X, et al. Proteomics, 2013, 13(23/24):3387

    86. [86] Zheng J, Cheng C, Fang W J, et al. Cryst Eng Comm, 2014, 16(19):3960

    87. [87] Zhang X, Liang Q, Han Q, et al. Analyst, 2016, 141:4219

    88. [88] Liang X T, Liu S Q, Zhu R, et al. J Sep Sci, 2016, 39:2806

    89. [89] Barreto A S, Da Silva R L, Dos Santos Silva S C, et al. J Sep Sci, 2010, 33(23/24):3811

    90. [90] Wang G H, Lei Y Q, Song H C. Anal Methods, 2012, 4(3):647

    91. [91] Ge D, Lee H K. J Chromatogr A, 2012, 1257:19

    92. [92] Rocío-Bautista P, Martínez-Benito C, Pino V, et al. Talanta, 2015, 139:13

    93. [93] Huang Z, Lee H K. J Chromatogr A, 2015, 1401:9

    94. [94] Huo S H, Yan X P. Analyst, 2012, 137(15):3445

    95. [95] Wang Y, Xie J, Wu Y, et al. Microchim Acta, 2014, 181(9/10):949

    96. [96] Cui X Y, Gu Z Y, Jiang D Q, et al. Anal Chem, 2009, 81(23):9771

    97. [97] Yu L Q, Yan X P. Chem Commun, 2013, 49(21):2142

    98. [98] Bagheri H, Javanmardi H, Abbasi A, et al. J Chromatogr A, 2016, 1431:27

    99. [99] Zhang S, Yang Q, Wang W, et al. J Agric Food Chem, 2016, 64(13):2792

    100. [100] Chen B, Liang C, Yang J, et al. Angew Chem Int Ed, 2006, 45(9):1390

    101. [101] Finsy V, Calero S, Garcia-Perez E, et al. Phys Chem Chem Phys, 2009, 11(18):3515

    102. [102] Luebbers M T, Wu T, Shen T, et al. Langmuir, 2010, 26(13):11319

    103. [103] Couck S, Remy T, Baron G V, et al. Phys Chem Chem Phys, 2010, 12(32):9413

    104. [104] Borjigin T, Sun F, Zhang J, et al. Chem Commun, 2012, 48(61):7613

    105. [105] Luebbers M T, Wu T, Shen L, et al. Langmuir, 2010, 26(19):15625

    106. [106] Chang N, Gu Z Y, Yan X P. J Am Chem Soc, 2010, 132(39):13645

    107. [107] Chang N, Yan X P. J Chromatogr A, 2012, 1257:116

    108. [108] Fan L, Yan X P. Talanta, 2012, 99:944

    109. [109] Münch A S, Seidel J, Obst A, et al. Chem Eur J, 2011, 17(39):10958

    110. [110] Yusuf K, Badjah-Hadj-Ahmed A Y, Aqel A, et al. J Chromatogr A, 2015, 1406:299

    111. [111] Yusuf K, Badjah-Hadj-Ahmed A Y, Aqel A, et al. J Chromatogr A, 2016, 1443:233

    112. [112] Yang X, Li C, Qi M, et al. J Chromatogr A, 2016, 1460:173

    113. [113] Alaerts L, Kirschhock C E, Maes M, et al. Angew Chem Int Ed Engl, 2007, 46(23):4293

    114. [114] Alaerts L, Maes M, Giebeler L, et al. J Am Chem Soc, 2008, 130(43):14170

    115. [115] Alaerts L, Maes M, Jacobs P A, et al. Phys Chem Chem Phys, 2008, 10(20):2979

    116. [116] Alaerts L, Maes M, Van der Veen M A, et al. Phys Chem Chem Phys, 2009, 11(16):2903

    117. [117] Yang C X, Yan X P. Anal Chem, 2011, 83(18):7144

    118. [118] Yang C X, Chen Y J, Wang H F, et al. Chem Eur J, 2011, 17(42):11734

    119. [119] Liu S S, Yang C X, Wang S W, et al. Analyst, 2012, 137(4):816

    120. [120] Ameloot R, Liekens A, Alaerts L, et al. Eur J Inorg Chem, 2010, 2010(24):3735

    121. [121] Tanaka K, Muraoka T, Hirayama D, et al. Chem Commun, 2012, 48(68):8577

    122. [122] Ahmed A, Forster M, Clowes R, et al. J Mater Chem A, 2013, 1(10):3276

    123. [123] Fu Y Y, Yang C X, Yan X P. Chem Commun, 2013, 49(64):7162

    124. [124] Xu Y, Xu L, Qi S, et al. Anal Chem, 2013, 85(23):11369

    125. [125] Pan C, Wang W, Chen X. J Chromatogr A, 2016, 1427:125

    126. [126] Li L M, Yang F, Wang H F, et al. J Chromatogr A, 2013, 1316:97

    127. [127] Han S, Wei Y, Valente C, et al. J Am Chem Soc, 2010, 132(46):16358

  • 加载中
计量
  • PDF下载量:  15
  • 文章访问数:  513
  • HTML全文浏览量:  63
文章相关
  • 收稿日期:  2016-08-17
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章