Ba1.03Ce0.9-xZrxTm0.1O3-α固体电解质的化学稳定性和电性能

仇立干 王茂元 孙玉凤 王婷梅

引用本文: 仇立干, 王茂元, 孙玉凤, 王婷梅. Ba1.03Ce0.9-xZrxTm0.1O3-α固体电解质的化学稳定性和电性能[J]. 无机化学学报, 2012, 28(12): 2643-2649. shu
Citation:  QIU Li-Gan, WANG Mao-Yuan, SUN Yu-Feng, WANG Ting-Mei. Chemical Stability and Electrical Properties of Ba1.03Ce0.9-xZrxTm0.1O3-α Solid Electrolytes[J]. Chinese Journal of Inorganic Chemistry, 2012, 28(12): 2643-2649. shu

Ba1.03Ce0.9-xZrxTm0.1O3-α固体电解质的化学稳定性和电性能

    通讯作者: 仇立干
  • 基金项目:

    江苏省高校“青蓝工程”和江苏省高校自然科学基金(No.07KJB150126)资助项目. (No.07KJB150126)

摘要: 用高温固相反应法制备了非化学计量组成的Ba1.03Ce0.9-xZrxTm0.1O3-α(x=0.2,0.4)固体电解质.分别用粉末X-射线衍射(XRD)和扫描电镜(SEM)方法表征了这两种材料的相组成和断面形貌,测定了它们在900 ℃下,CO2以及水蒸气气氛中的化学稳定性.在500~900 ℃温度范围内,分别用气体浓差电池方法和交流阻抗谱技术研究了材料在不同气体气氛中的离子导电性,研究了以这两种材料为固体电解质的氢-空气燃料电池性能.结果表明,Ba1.03Ce0.7Zr0.2Tm0.1O3-α材料为单一钙钛矿型斜方晶结构,Ba1.03Ce0.5Zr0.4Tm0.1O3-α材料为单一钙钛矿型立方晶结构.2种材料均具有较高的致密性和化学稳定性.在500~900 ℃温度范围内、湿润氢气中,Ba1.03Ce0.7Zr0.2Tm0.1O3-α材料表现为纯的离子导电性,而Ba1.03Ce0.5Zr0.4Tm0.1O3-α材料表现为离子和电子的混合导电性;在湿润空气中,两种材料均表现为质子、氧离子和电子空穴的混合导电性;在氢-空气燃料电池条件下,均表现为质子、氧离子和电子的混合导电性.以这两种材料为固体电解质的氢-空气燃料电池均能稳定地工作.在相同实验条件下,Ba1.03Ce0.7Zr0.2Tm0.1O3-α材料的离子导电性及其氢-空气燃料电池性能均高于Ba1.03Ce0.5Zr0.4Tm0.1O3-α材料.

English

  • 
    1. [1] Iwahara H, Uchida H, Ono K, et al. J. Electrochem. Soc., 1988,135:529-533[1] Iwahara H, Uchida H, Ono K, et al. J. Electrochem. Soc., 1988,135:529-533

    2. [2] Hibino T, Hashimoto A, Suzuki M, et al. J. Phys. Chem. B, 2001,105:11399-11401[2] Hibino T, Hashimoto A, Suzuki M, et al. J. Phys. Chem. B, 2001,105:11399-11401

    3. [3] Iwahara H, Asakura Y, Katahira K, et al. Solid State Ionics, 2004,168:299-310[3] Iwahara H, Asakura Y, Katahira K, et al. Solid State Ionics, 2004,168:299-310

    4. [4] Peng R R, Wu Y, Yang L Z, et al. Solid State Ionics, 2006, 177:389-393[4] Peng R R, Wu Y, Yang L Z, et al. Solid State Ionics, 2006, 177:389-393

    5. [5] Cai M Y, Liu S, Efimov K, et al. J. Membrane Science, 2009, 343:90-96[5] Cai M Y, Liu S, Efimov K, et al. J. Membrane Science, 2009, 343:90-96

    6. [6] Barison S, Battagliarin M, Cavallin T, et al. J. Mater. Chem., 2008,18:5120-5128[6] Barison S, Battagliarin M, Cavallin T, et al. J. Mater. Chem., 2008,18:5120-5128

    7. [7] Katahira K, Kohchi Y, Shimura T, et al. Solid State Ionics, 2000,138:91-98[7] Katahira K, Kohchi Y, Shimura T, et al. Solid State Ionics, 2000,138:91-98

    8. [8] Kreuer K D. Solid State Ionics, 1997,97:1-15[8] Kreuer K D. Solid State Ionics, 1997,97:1-15

    9. [9] Ma G L, Matsumoto H, Iwahara H. Solid State Ionics, 1999, 122:237-247[9] Ma G L, Matsumoto H, Iwahara H. Solid State Ionics, 1999, 122:237-247

    10. [10] MA Gui-Lin(马桂林), QIU Li-Gan(仇立干), CHEN Rong (陈蓉). Acta Chim. Sinica (Huaxue Xuebao), 2002,60:2135-2140[10] MA Gui-Lin(马桂林), QIU Li-Gan(仇立干), CHEN Rong (陈蓉). Acta Chim. Sinica (Huaxue Xuebao), 2002,60:2135-2140

    11. [11] Qiu L G, Ma G L, Wen D J. J. Rare Earths, 2004,22:678-682[11] Qiu L G, Ma G L, Wen D J. J. Rare Earths, 2004,22:678-682

    12. [12] WANG Mao-Yuan(王茂元), QIU Li-Gan(仇立干). Chinese J. Inorg. Chem. (Wuji Huaxue Xuebao), 2009,25:339-344[12] WANG Mao-Yuan(王茂元), QIU Li-Gan(仇立干). Chinese J. Inorg. Chem. (Wuji Huaxue Xuebao), 2009,25:339-344

    13. [13] Wang X W, Yin J L, Xu J H, et al. Chin. J. Chem., 2011, 29:1114-1118[13] Wang X W, Yin J L, Xu J H, et al. Chin. J. Chem., 2011, 29:1114-1118

    14. [14] Wang M Y, Qiu L G, Cao X. J. Rare Earths, 2011,29:678-682[14] Wang M Y, Qiu L G, Cao X. J. Rare Earths, 2011,29:678-682

    15. [15] QIU Li-Gan(仇立干), WANG Mao-Yuan(王茂元). Acta Chim. Sinica (Huaxue Xuebao), 2010,68:276-282[15] QIU Li-Gan(仇立干), WANG Mao-Yuan(王茂元). Acta Chim. Sinica (Huaxue Xuebao), 2010,68:276-282

    16. [16] Qiu L G, Ma G L, Wen D J. Chin. J. Chem., 2005,23:1641-1645[16] Qiu L G, Ma G L, Wen D J. Chin. J. Chem., 2005,23:1641-1645

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  312
  • HTML全文浏览量:  26
文章相关
  • 收稿日期:  2012-01-02
  • 网络出版日期:  2012-06-11
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章