Convenient Synthesis of Imidazo-Fused Heterocycles via CeCl3·7H2O Catalyzed Groebke-Blackburn-Bienayme Reaction

Zhaorui Zhang Liang Xu Hanqin Tang Boxin Wu Di Feng Changbin Guo

Citation:  Zhang Zhaorui, Xu Liang, Tang Hanqin, Wu Boxin, Feng Di, Guo Changbin. Convenient Synthesis of Imidazo-Fused Heterocycles via CeCl3·7H2O Catalyzed Groebke-Blackburn-Bienayme Reaction[J]. Chinese Journal of Organic Chemistry, 2017, 37(5): 1252-1257. doi: 10.6023/cjoc201701024 shu

CeCl3·7H2O催化Groebke-Blackburn-Bienayme反应简便合成咪唑稠杂环化合物

    通讯作者: 郭长彬, guocb@cnu.edu.cn
  • 基金项目:

    北京市优秀人才培养 20071D0501600227

    北京市教委科技发展 KM201010028011

    国家自然科学基金 30873140

摘要: 发展了由CeCl3·7H2O催化“一锅法”Groebke-Blackburn-Bienayme(GBB)反应合成咪唑稠杂环化合物的一种简单、高效和环境友好的合成方法.该反应以醛、氨基吖嗪、异腈三组分为原料,CeCl3·7H2O为催化剂,乙醇作为反应介质、60℃反应温度下可高收率合成相应咪唑稠杂环化合物.该方法具有底物范围广,反应时间短,纯化方法简单的优势.通过CeCl3·7H2O和高效催化剂LaCl3·7H2O的对比研究发现,CeCl3·7H2O具有同样高的催化效率,为咪唑稠杂环化合物的合成提供了一种新的便利方法.

English

  • 

    Isocyanide-based multicomponent reactions are in accord with green chemistry standards as a powerful tool for the construction of novel and diverse molecular structures due to "one-pot" advantages over conventional multistep syntheses. [1]The Groebke-Blackburn-Bienayme (GBB) reaction is a four-centre, three-component reaction, which involves starting materials of aldehyde, aminoazine and isocyanide in the presence of a suitable catalyst to afford a highly substituted and imidazo-fused heterocycles. [2] In recent decades, imidazo-fused heterocycles exhibit a broad spectrum of biological activities. Many commercially available drugs with these scaffolds have been developed, such as the anxiolytic drug alpidem, [3] the sedative drug zol-pidem, [4] the anti-ulcer drug zolimidine, [5]the heart failure drug olprinone [6] (Figure 1) and many other compounds are being investigated in the stage of biological testing or preclinical evaluation. [7]

    Figure 1.  Some examples of imidazo-fused drugs

    The GBB reaction catalysts are generally acid in various kinds, occasionally base, such as Br nsted acids like CH3COOH, [8] HClO4, [9] cellulose sulfuric acid, [10] p-toluene sulfonic acid, [11]CH3SO3H; [12] Lewis acids like Sc(OTf)3, [13] SnCl2, [14] LaCl3, [15] LaCl3•7H2O, [16] MgCl2, [17] CeCl3• 7H2O, [18] ZrCl4, [19] ZnCl2, [20] RuCl3 [21] and InCl3, [22]solid acid catalyst like LaMnO3, [23] ionic liquid like 1-butyl-3-methylimidazolium bromide, [24] base like piperidine. [25] However, most of these catalysts suffer from several drawbacks such as long reaction time, harsh reaction conditions, poor yield, vastvast toxic metal-containing waste, and expensive reagents. In addition, different catalysts for a variety of substrates have different catalytic effect and each catalyst is not generally highly efficient. In order to overcome these disadvantages, development of novel methods to construct a variety of imidazo-fused heterocycles is still necessary and attractive. As for substrates, this reaction has a broad reactivity domain. Aminoazines include 2-amino-pyridine, 2-aminopyrimidine, 2-aminopyrazine, 2-amino-thiazole, 2-aminopyrazole, and a few more. Similarly, aromatic and aliphatic aldehydes participate in GBB reaction. [26] Commercial isocyanides can be widely used.

    CeCl3 and CeCl3nH2O, as ecofriendly, efficient and economical catalysts, [27] have been continuously studied to enhance the reactivity and selectivity of organic reactions. [28] With our continuous interest in exploring green catalyst, we knew that LaCl3 [15] and LaCl3•7H2O [16] catalysts had exhibited high activities at relative low reaction temperature of 60 ℃ in ethanol in GBB reaction. However, CeCl3•7H2O was reported as catalyst of GBB reaction in DMSO at 70 ℃ with a relatively low yield at 42% (Eq. 1). [18] Therefore, these findings gave us full interest to enhance the activities of CeCl3•7H2O catalyst by optimization of the reaction conditions applied for the GBB reaction. According to further attempts with different equivalent catalyst, temperature and solvent, we have successfully developed an efficient method for synthesis of imidazo-fused heterocycles using simple starting materials in the presence of 10 mol% CeCl3•7H2O in ethanol at 60 ℃. Using this method the reaction yield could be enhanced to 97%. In addition, we made a comparative study of CeCl3•7H2O with LaCl3•7H2O, which was reported to be a good catalyst in GBB reaction, and a series of new compounds were obtained.

    1   Results and discussion

    The GBB reaction is a very powerful tool for the efficient synthesis of libraries of diverse complex small molecules. To explore a kind of green and available method, we tried to search a high-performance catalyst to improve the synthetic reactions of imidazo-fused heterocycles into one step. A preliminary examination of the reaction of 5-chloropyridin-2-amine, benzaldehyde and t-butyl isocyanide in ethanol was selected as the model reaction for optimum reaction conditions. The time taken to achieve complete conversions, temperature and the isolated yields were recorded in Table 1.

    Table 1.  Optimization of GBB reaction conditionsa
    EntrySolventCeCl3•7H2O/ mol%T/℃Time/minYieldb/%
    1Ethanolcr.t.120N.R.d
    2Ethanol5r.t.15082
    3Ethanol53510086
    4Ethanol5606089
    5Ethanol10r.t.11096
    6Ethanol10606097
    7Methanol10609065
    8Trifluoroethanol10609078
    9H2O106016074
    10H2O108012083
    11e10606056
    12Ethanol10706096
    13Ethanol15606095
    14DMSO107012083
    15Toluene106012077
    16Dichloromethane103512081
    17Acetonitrile106012084
    a Reaction conditions: 5-chloropyridin-2-amine (1.0 mmol), benzaldehyde (1.0 mmol), t-butyl isocyanide (1.0 mmol); b Isolated yield; c No catalyst used; dN.R. means no reaction; eSolvent-free condition.
    Table 1.  Optimization of GBB reaction conditionsa

    In our investigation, initially we found that no reaction occurred in the absence of catalysts at room temperature. However, when CeCl3•7H2O (5 mol%) was added at room temperature, the corresponding N-(tert-butyl)-6-chloro-2-phenylimidazo[1, 2-a]-pyridine-3-amine was obtained in 82% yield (Table 1, Entry 2). Upon varying the temperature of the reaction from room temperature to 70 ℃, the best yield was obtained at 60 ℃. Further increase of the temperature neither increased the yield nor shortened the reaction time. The solvents including methanol, water, DMSO, toluene, trifluoroethanol, dichloromethane and acetonitrile did not give excellent yields. Hence, we chose 10 mol% CeCl3•7H2O under ethanol and 60 ℃ conditions as the GBB reaction optimal condition for our further study.

    To explore the scope of substrates in the CeCl3•7H2O-catalyzed GBB reaction substrates, we examined the generality of the reaction by using different aldehydes, aminoazines and isocyanides to achieve a wide range of imidazo-fused heterocycles and a series of novel compounds in satisfactory yields with short reaction time (Table 2). A variety of aldehydes were used, some with electron-with-drawing and eletron-donating groups being attached. It was found that electron-withdrawing groups like Cl and CN on the phenyl ring gave the products in good yields 93%~94% (Table 2, 4b~4c). At the same time, electron-donating groups like methoxyl on the phenyl ring afforded the unexpected yield in 93% (Table 2, 4d). When we further tried to replace the phenyl ring with the pyridyl ring on the aldehyde, yield of some products decreased slightly, and the reaction time need to be extended to 6 h (Table 2, 4m~4o). Further, scope of the substrates was extended to bicyclic aldehyde, which provided products in high yield 91% (Table 2, 4f). Different scaffolds of imidazo-fused heterocycles were successfully obtained by extension of various aminoa-zines. What's more, to extend scope of the reaction, t-butyl isocyanide, n-butyl isocynide and cyclohexylisocyanide were also used as synthetic substrates.

    Table 2.  Synthesis of imidazo-fused heterocycles via GBB reactiona
    EntryAminoazine 1Aldehyde 2R3Compd.Time/hYieldb/%
    1R1=5-ClR2=Pht-Butyl4a197
    2R1=5-ClR2=4-ClC6H4t-Butyl4b193
    3R1=5-ClR2=4-CNC6H4t-Butyl4c194
    4R1=5-ClR2=4-MeOC6H4t-Butyl4d193
    5R1=5-ClR2=4-Et2NC6H4t-Butyl4e2.594
    6R1=5-ClR2=4-C8H7Ot-Butyl4f391
    7R1=5-ClR2=Phn-Butyl4g388
    8R1=5-ClR2=4-ClC6H4Cyclohexyl4h391
    92-NH2-pyrazineR2=PhCyclohexyl4i3.593
    102-NH2-thiazoleR2=Pht-Butyl4j384
    112-NH2-pyrazineR2=Pht-Butyl4k390
    122-NH2-pyrimidineR2=3, 5-Me2C6H3t-Butyl4l3.585
    13R1=HR2=3-BrC5H3NCyclohexyl4m685
    143-NH2-1, 2, 4-triazoleR2=3-BrC5H3Nt-Butyl4n687
    152-NH2-5-Cl-pyrazineR2=3-BrC5H3Nt-Butyl4o680
    a Reaction conditions: aldehyde (1.0 mmol), aminoazine (1.0 mmol), isocyanide (1.0 mmol), CeCl3•7H2O (10 mol %), ethanol, 60 ℃; bIsolated yield.
    Table 2.  Synthesis of imidazo-fused heterocycles via GBB reactiona

    Due to obtain the best conditions of the CeCl3•7H2O-catalyzed GBB reaction, the catalytic activity of CeCl3• 7H2O for the synthesis of compounds 4n and 4o at a relatively low yield was compared with LaCl3• 7H2O in ethanol at 60 ℃. As shown in Table 3, CeCl3• 7H2O-catalyzed GBB product 4o resulting in 83% yield is substantially the same as CeCl3•7H2O in a 80% yield. However, LaCl3• 7H2O-catalyzed GBB product 4n resulting in 76% yield is lower than CeCl3•7H2O yield 87%. Hence, it is sure that CeCl3•7H2O as a very valuable and available catalyst is comparable to LaCl3•7H2O in GBB reaction.

    Table 3.  Comparison of efficiency of CeCl3•7H2O and LaCl3• 7H2O in the synthesis of products 4o and 4n
    Entry Compd. Catalysta Yieldb/%
    1 4o CeCl3•7H2O 80
    2 4o LaCl3•7H2O 83
    3 4n CeCl3•7H2O 87
    4 4n LaCl3•7H2O 76
    a10 mol%; bIsolated yield.
    Table 3.  Comparison of efficiency of CeCl3•7H2O and LaCl3• 7H2O in the synthesis of products 4o and 4n

    The structures of obtained GBB products 4a~4o were fully characterized by HRMS, 1H NMR and 13C NMR spectra. The single crystal structures of the two GBB products 4m and 4o were also determined by X-ray diffraction analysis in order to confirm the products (Figure 2). Crystallographic data of 4m (CCDC 1498341) and 4o (CCDC 1498345) have been deposited at the Cambridge Crystallographic Database Centre.

    Figure 2.  Single crystal structure of products 4m and 4o

    2   Conclusions

    In conclusion, we had successfully developed an efficient and simple protocol for the synthesis of imidazo-fused heterocycles via one-pot three component GBB reaction catalyzed by CeCl3•7H2O. The salient features of our protocol include less reaction time, high substrate adaptability, easy purification, fewer column chromatography, cheap and green catalyst and easy separation for catalyst. Hence, this method can be easily applied to synthesis of N-fused and S-fused heterocycles at industrial scale. In addition, a serious of new imidazo-fused heterocycles which can ultimately lead to diverse medicinally relevant compounds were synthesized. This green methodology might provide a better manners alternative to the existing literature reports.

    3   Experimental section

    3.1   Instruments and reagents

    All reagents and solvents were obtained from commercial suppliers and used as received without further purification. Melting points were determined using a WRS-1B digital melting point apparatus from Shanghai Measuring Instruments Equipment Co., Ltd. 1H NMR and 13C NMR spectra were measured on a VARIAN Mercury 600 MHz spectrometer in deuterated solvents with TMS as an internal standard. 1H NMR and 13C NMR spectra were obtained in CDCl3 or DMSO-d6 solutions as indicated. High-resolution mass spectra (HRMS) were recorded on Thermo Scientific LTQ Orbitrap Discovery. Thin-layer chromatography (TLC) was performed using silica gel GF254. All reactions progress was monitored by TLC and column chromatography was performed with silica gel (200~300 mesh).

    3.2   Experimental method

    A mixture of aldehyde (1.0 mmol), aminoazine (1.0 mmol), isocyanide (1.0 mmol) and 10 mol% CeCl3•7H2O in ethanol (2.0 mL) was stirred at 60 ℃ in an oil bath. After completion of the reaction as indicated by TLC, the resulting mixture was cooled to room temperature. Then ethanol was removed at reduced pressure and the residue was distributed in dichloromethane (20 mL) and water (10 mL). The organic layer was separated and the aqueous layer was extracted with dichloromethane. The combined organic phases were dried over anhydrous sodium sulfate and concentrated under reduced pressure to afford a crude product which was purified by column chromatography on silica gel using petroleum ether and ethyl acetate (V:V=5:1) as eluent (4g~4o). In some cases, TLC showed that the product was nearly pure, so that the crude residue could be used directly purification by recrystallization with petroleum and slight ethyl acetate to obtain pure compounds (4a~4f).

    N-(tert-Butyl)-6-chloro-2-phenylimidazo[1, 2-a]pyri-din-3-amine (4a): White solid, yield 97%. m.p. 207~209 ℃; 1H NMR (600 MHz, DMSO-d6) δ: 8.50 (s, 1H), 8.14 (d, J=7.5 Hz, 2H), 7.51 (d, J=9.4 Hz, 1H), 7.38 (t, J=7.6 Hz, 2H), 7.27 (t, J=7.3 Hz, 1H), 7.20 (dd, J=9.4, 1.5 Hz, 1H), 4.67 (s, 1H), 0.98 (s, 9H); 13C NMR (150 MHz, DMSO-d6) δ: 139.9, 139.5, 135.4, 128.4, 128.1, 127.6, 125.1, 122.2, 118.9, 118.1, 56.4, 30.4. HRMS calcd for C17H19ClN3 [M+H]+ 300.1262, found 300.1263.

    N-(tert-Butyl)-6-chloro-2-(4-chlorophenyl)imidazo[1, 2-a]pyridin-3-amine (4b): White solid, yield 93%. m.p. 196~198 ℃; 1H NMR (600 MHz, DMSO-d6) δ: 8.55~8.52 (m, 1H), 8.22~8.20 (m, 1H), 8.20~8.19 (m, 1H), 7.56~7.51 (m, 1H), 7.49~7.44 (m, 2H), 7.24 (dd, J=9.4, 2.1 Hz, 1H), 4.74 (s, 1H), 1.01 (s, 9H); 13C NMR (150 MHz, DMSO-d6) δ: 140.0, 138.2, 134.3, 132.2, 129.7, 128.4, 125.4, 122.3, 119.0, 118.1, 56.6, 30.4. HRMS calcd for C17H18Cl2N3 [M+H]+ 334.0872, found 334.0871.

    4-(3-(tert-Butylamino)-6-chloroimidazo[1, 2-a]pyridin-2-yl)benzonitrile (4c): Light yellow solid, yield 94%. m.p. 226~228 ℃; 1H NMR (600 MHz, DMSO-d6) δ: 8.57 (d, J=0.5 Hz, 1H), 8.40~8.37 (m, 1H), 7.89~7.84 (m, 1H), 7.57 (d, J=9.4 Hz, 1H), 7.28 (d, J=9.5 Hz, 1H), 4.85 (s, 1H), 1.02 (d, J=1.3 Hz, 1H); 13C NMR (150 MHz, CDCl3) δ: 140.6, 139.3, 138.5, 132.1, 128.4, 126.3, 124.83, 121.3, 120.5, 119.0, 118.0, 110.9, 56.8, 30.4. HRMS calcd for C18H18ClN4 [M+H]+ 325.1215, found 325.1217.

    N-(tert-Butyl)-6-chloro-2-(4-methoxyphenyl)imida-zo[1, 2-a]pyridin-3-amine (4d): White solid, yield 93%. m.p. 175~177 ℃; 1H NMR (600 MHz, DMSO-d6) δ: 8.50 (s, 1H), 8.11 (d, J=9.6 Hz, 1H), 7.50 (dd, J=9.4, 1.9 Hz, 1H), 7.21~7.17 (m, 1H), 6.97 (d, J=9.7 Hz, 1H), 4.64 (d, J=1.8 Hz, 1H), 3.79 (d, J=1.4 Hz, 1H), 1.00 (d, J=1.6 Hz, 1H); 13C NMR (150 MHz, CDCl3) δ: 159.2, 140.7, 140.2, 129.3, 127.4, 125.1, 123.4, 121.3, 119.6, 117.5, 113.7, 56.4, 55.2, 30.3. HRMS calcd for C18H21ClN3O [M+H]+ 330.1368, found 330.1371.

    N-(tert-Butyl)-6-chloro-2-(4-(diethylamino)phenyl)im-idazo[1, 2-a]pyridin-3-amine (4e): Yellow solid, yield 94%. m.p. 163~165 ℃; 1H NMR (600 MHz, DMSO-d6) δ: 8.45~8.43 (m, 1H), 8.01~7.97 (m, 1H), 7.45 (dd, J=9.4, 0.4 Hz, 1H), 7.15 (dd, J=9.4, 2.1 Hz, 1H), 6.67 (d, J=9.0 Hz, 1H), 4.54 (s, 1H), 3.36 (t, J=7.0 Hz, 1H), 1.11 (t, J=7.0 Hz, 2H), 1.03 (s, 5H); 13C NMR (150 MHz, CDCl3) δ: 147.3, 141.3, 140.1, 124.6, 122.7, 121.6, 121.1, 119.2, 117.2, 111.5, 56.4, 44.3, 30.4, 12.6. HRMS calcd for C21H28ClN4 [M+H]+ 371.1997, found 371.1997.

    N-(tert-Butyl)-6-chloro-2-(2, 3-dihydrobenzofuran-5-yl)-imidazo[1, 2-a]pyridin-3-amine (4f): Yellow solid, yield 91%. m.p. 185~187 ℃; 1H NMR (600 MHz, DMSO-d6) δ: 8.48 (s, 1H), 8.03 (s, 1H), 7.93 (d, J=8.1 Hz, 1H), 7.48 (d, J=9.4 Hz, 1H), 7.19 (d, J=9.3 Hz, 1H), 6.78 (d, J=8.3 Hz, 1H), 4.61 (s, 1H), 4.56 (t, J=8.6 Hz, 2H), 3.22 (t, J=8.6 Hz, 2H), 1.01 (s, 9H); 13C NMR (150 MHz, CDCl3) δ: 159.8, 141.0, 140.1, 128.0, 127.2, 125.1, 124.9, 123.2, 121.2, 119.6, 117.4, 108.9, 71.4, 56.4, 30.4, 29.6. HRMS calcd for C19H21ClN3O [M+H]+ 342.1368, found 342.1368.

    N-Butyl-6-chloro-2-phenylimidazo[1, 2-a]pyridin-3-ami-ne (4g): White solid, yield 88%. m.p. 128~130 ℃; 1H NMR (600 MHz, CDCl3) δ: 8.08 (d, J=1.8 Hz, 1H), 7.95 (d, J=7.3 Hz, 2H), 7.51~7.44 (m, 3H), 7.34 (t, J=7.4 Hz, 1H), 7.09 (dd, J=9.4, 2.0 Hz, 1H), 3.14 (t, J=6.3 Hz, 1H), 3.05 (dd, J=13.8, 6.8 Hz, 2H), 1.63~1.57 (m, 2H), 1.47~1.40 (m, 2H), 0.94 (t, J=7.3 Hz, 3H); 13C NMR (150 MHz, CDCl3) δ: 139.4, 136.3, 133.4, 128.7, 127.7, 126.9, 126.8, 125.5, 120.3, 117.6, 48.0, 32.8, 20.2, 13.9. HRMS calcd for C17H19ClN3 [M+H]+ 300.1262, found 300.1262.

    6-Chloro-2-(4-chlorophenyl)-N-cyclohexylimidazo[1, 2-a]pyridin-3-amine (4h): White solid, yield 91%. m.p. 219~221 ℃; 1H NMR (600 MHz, CDCl3) δ: 8.11 (d, J=1.6 Hz, 1H), 7.98 (d, J=8.5 Hz, 2H), 7.47 (d, J=9.5 Hz, 1H), 7.42 (d, J=8.5 Hz, 2H), 7.10 (dd, J=9.4, 1.9 Hz, 1H), 3.04 (d, J=4.5 Hz, 1H), 2.97~2.91 (m, 1H), 1.79 (d, J=11.9 Hz, 2H), 1.74~1.67 (m, 2H), 1.28~1.13 (m, 5H); 13C NMR (150 MHz, CDCl3) δ: 139.6, 136.5, 133.5, 132.1, 128.7, 128.2, 125.8, 125.3, 120.6, 120.4, 117.6, 56.8, 34.1, 25.6, 24.7. HRMS calcd for C19H20Cl2N3 [M+H]+ 360.1029, found 360.1032.

    N-Cyclohexyl-2-phenylimidazo[1, 2-a]pyrazin-3-amine (4i): White solid, yield 93%. m.p. 156~158 ℃; 1H NMR (600 MHz, DMSO-d6) δ: 8.92 (d, J=1.4 Hz, 1H), 8.36 (dd, J=4.6, 1.4 Hz, 1H), 8.22 (dd, J=8.3, 1.2 Hz, 2H), 7.85 (d, J=4.6 Hz, 1H), 7.53~7.41 (m, 2H), 7.38~7.30 (m, 1H), 5.05 (d, J=7.0 Hz, 1H), 2.90~2.83 (m, 1H), 1.71 (d, J=11.9 Hz, 2H), 1.68~1.59 (m, 2H), 1.49 (s, 1H), 1.34~1.22 (m, 2H), 1.15~1.02 (m, 3H); 13C NMR (150 MHz, CDCl3) δ: 143.4, 138.9, 136.7, 133.6, 129.0, 128.7, 128.1, 127.3, 115.5, 56.9, 34.3, 25.6, 24.8. HRMS calcd for C18H21N4 [M+H]+ 293.1761, found 293.1764.

    N-(tert-Butyl)-6-phenylimidazo[2, 1-b]thiazol-5-amine (4j): White solid, yield 84%. m.p. 150~152 ℃; 1H NMR (600 MHz, DMSO-d6) δ: 8.09 (dd, J=8.2, 1.0 Hz, 2H), 7.72 (d, J=4.5 Hz, 1H), 7.34 (t, J=7.7 Hz, 2H), 7.19 (t, J=7.4 Hz, 1H), 7.16 (d, J=4.5 Hz, 1H), 4.49 (s, 1H), 1.02 (s, 9H); 13C NMR (150 MHz, CDCl3) δ: 145.5, 140.1, 135.3, 128.2, 127.2, 126.7, 125.5, 117.8, 111.4, 55.8, 30.2. HRMS calcd for C15H18N3S [M+H]+ 272.1216, found 272.1217.

    N-(tert-Butyl)-2-phenylimidazo[1, 2-a]pyrazin-3-amine (4k): Gray solid, yield 90%. m.p. 148~150 ℃; 1H NMR (600 MHz, CDCl3) δ: 9.00 (s, 1H), 8.14 (dd, J=4.6, 1.2 Hz, 1H), 7.93~7.89 (m, 2H), 7.86 (d, J=4.6 Hz, 1H), 7.46 (t, J=7.7 Hz, 2H), 7.37 (t, J=7.4 Hz, 1H), 1.05 (s, 9H); 13C NMR (150 MHz, CDCl3) δ: 143.3, 142.2, 137.23, 134.2, 128.8, 128.4, 128.1, 125.0, 116.3, 56.9, 30.3. HRMS calcd for C16H19N4 [M+H]+ 267.1604, found 267.1607.

    N-(tert-Butyl)-2-(3, 5-dimethylphenyl)imidazo[1, 2-a]pyr-imidin-3-amine (4l): Yellow solid, yield 85%. m.p. 189~191 ℃; 1H NMR (600 MHz, DMSO-d6) δ: 8.79 (dd, J=6.8, 2.0 Hz, 1H), 8.47~8.44 (m, 1H), 7.85 (s, 2H), 7.01 (dd, J=6.8, 4.0 Hz, 1H), 6.94 (s, 1H), 4.69 (s, 1H), 2.33 (s, 6H), 1.01 (s, 9H); 13C NMR (150 MHz, CDCl3) δ: 149.2, 145.0, 141.1, 137.6, 134.2, 130.9, 129.5, 126.1, 121.8, 107.7, 56.6, 30.4, 21.4. HRMS calcd for C18H23N4 [M+H]+ 295.1917, found 295.1918.

    2-(3-Bromopyridin-4-yl)-N-cyclohexylimidazo[1, 2-a]-pyridin-3-amine (4m): Light yellow solid, yield 85%. m.p. 123~125 ℃; 1H NMR (600 MHz, DMSO-d6) δ: 8.84 (s, 1H), 8.60 (d, J=4.9 Hz, 1H), 8.31 (dt, J=7.0, 1.0 Hz, 1H), 7.65 (d, J=4.7 Hz, 1H), 7.51 (dt, J=9.1, 0.9 Hz, 1H), 7.22 (ddd, J=9.0, 6.6, 1.2 Hz, 1H), 6.95 (td, J=6.8, 1.1 Hz, 1H), 4.59 (d, J=6.0 Hz, 1H), 2.70~2.63 (m, 1H), 1.63~1.56 (m, 2H), 1.53 (dd, J=11.5, 4.2 Hz, 2H), 1.44~1.36 (m, 1H), 1.09~0.92 (m, 5H); 13C NMR (150 MHz, DMSO-d6) δ: 152.1, 148.1, 144.1, 142.0, 134.1, 126.9, 126.6, 124.5, 123.0, 120.5, 117.8, 112.0, 56.6, 33.8, 25.5, 24.5. HRMS calcd for C18H20BrN4 [M+H]+ 371.0866, found 371.0871.

    6-(3-Bromopyridin-4-yl)-N-(tert-butyl)-1H-imidazo[2, 1-c] [1, 2, 4]triazol-5-amine) (4n): White solid, yield 87%. m.p. 197~200 ℃; 1H NMR (600 MHz, DMSO-d6) δ: 11.99 (s, 1H), 8.88 (s, 1H), 8.64 (d, J=4.9 Hz, 1H), 7.87 (s, 1H), 7.67 (d, J=4.9 Hz, 1H), 4.30 (s, 1H), 0.97 (s, 9H); 13C NMR (150 MHz, CDCl3) δ: 153.1, 152.8, 148.2, 139.3, 126.4, 123.0, 120.3, 56.0, 29.9. HRMS calcd for C13H16BrN6 [M+H]+ 335.0614, found 335.0617.

    2-(3-Bromopyridin-4-yl)-N-(tert-butyl)-6-chloroimidazo-[1, 2-a]pyrazin-3-amine (4o): White solid, yield 80%. m.p. 193~195 ℃; 1H NMR (600 MHz, DMSO-d6) δ: 8.95 (d, J=1.3 Hz, 1H), 8.89 (s, 1H), 8.70 (d, J=1.3 Hz, 1H), 8.64 (d, J=4.9 Hz, 1H), 7.72~7.70 (m, 1H), 4.64 (s, 1H), 0.90 (s, 9H); 13C NMR (150 MHz, CDCl3) δ: 152.3, 148.4, 143.3, 142.5, 140.9, 136.6, 134.9, 127.2, 126.8, 120.9, 114.5, 56.8, 30.0. HRMS calcd for C15H16BrClN5 [M+H]+ 380.0272, found 380. 0272.

    Supporting Information1H NMR and 13C NMR spec-tra for all products associated with this article. The Supporting Information is available free of charge via the Internet at http://sioc-journal.cn/.

    1. [1]

      (a) Ma, Z. ; Xiang, Z. ; Luo, T. ; Lu, K. ; Xu, Z. ; Chen, J. ; Yang, Z. J. Comb. Chem. 2006, 8, 696. (b) Riva, R. ; Banfi, L. ; Basso, A. ; Cerulli, V. ; Guanti, G. ; Pani, M. J. Org. Chem. 2010, 15, 5134. (c) Erb, W. ; Neuville, L. ; Zhu, J. J. Org. Chem. 2009, 74, 3109. (d) Zhang, Z. R. ; Zheng, X. L. ; Guo, C. B. Chin. J. Org. Chem. 2016, 36, 1241 (in Chinese). (张钊瑞, 郑晓霖, 郭长彬, 有机化学, 2016, 36, 1241. )(e) Singh, S. ; Samanta, S. Chin. J. Chem. 2015, 33, 1244. (f) Wang, H. ; Xu, B. Chin. J. Org. Chem. 2015, 35, 588 (in Chinese). (王浩, 许斌, 有机化学, 2015, 35, 588. )(g) Sun, X. Y. ; Wang, W. M. ; Ma, J. ; Yu, S. Y. Acta Chim. Sinica 2017, 75, 115 (in Chinese). (孙晓阳, 王文敏, 马晶, 俞寿云, 化学学报, 2017, 75, 115. )(h) Ren, S. B. ; Zhang, H. F. ; Zhang, J. ; Zhang, W. ; Liu, Y. K. Chin. J. Org. Chem. 2016, 36, 1954 (in Chinese). (任少波, 张海峰, 张剑, 张巍, 刘运奎, 有机化学, 2016, 36, 1954. )(i) Xu, W. S. ; Zhao, S. J. ; Luo, X. P. ; Song, J. N. ; Liu, J. Q. ; Bi, X. H. ; Liao, P. Q. Chin. J. Org. Chem. 2015, 35, 2095 (in Chinese). (徐文帅, 赵寿经, 骆晓沛, 宋金娜, 刘建全, 毕锡和, 廖沛球, 有机化学, 2015, 35, 2095. )(j) Li, Z. H. ; Yan, N. N. ; Xie, J. W. ; Liu, P. ; Zhang, J. ; Dai, B. Chin. J. Chem. 2015, 33, 589.

    2. [2]

      Devi, N.; Rawal, R. K.; Singh, V. Tetrahedron 2015, 71, 183. doi: 10.1016/j.tet.2014.10.032

    3. [3]

      Berson, A.; Descatoire, V.; Sutton, A.; Fau, D.; Maulny, B.; Vadrot, N.; Feldmann, G.; Berthon, B.; Tordjmann, T.; Pessayre, D. J. Pharmacol. Exp. Ther. 2001, 299, 793.

    4. [4]

      Harrison, T. S.; Keating, G. M. CNS Drugs 2005, 19, 65. doi: 10.2165/00023210-200519010-00008

    5. [5]

      Kaminski, J. J.; Wallmark, B.; Briving, C.; Andersson, B. M. J. Med. Chem. 1991, 34, 533. doi: 10.1021/jm00106a008

    6. [6]

      Mizushige, K.; Ueda, T.; Yukiiri, K.; Suzuki, H. Cardiovasc. Drug Rev. 2002, 20, 163.

    7. [7]

      (a) Palmer, A. M.; Chrismann, S.; Munch, G.; Brehm, C.; Zimmermann, P. J.; Buhr, W.; Senn-Bilfinger, J.; Feth, M. P.; Simon, W. A. Bioorg. Med. Chem. 2009, 17, 368.(b) Mori, H.; Tanaka, M.; Kayasuga, R.; Masuda, T.; Ochi, Y.; Yamada, H.; Kishikawa, K.; Ito, M.; Nakamura, T. Bone 2008, 43, 840.

    8. [8]

      Sharma, A.; Li, H. Y. Synlett 2011, 1407.

    9. [9]

      Huang, Y.; Hu, X. Q.; Shen, D. P.; Chen, Y. F.; Xu, P. F. Mol. Diversity 2007, 11, 73. doi: 10.1007/s11030-007-9059-3

    10. [10]

      Groebke, K.; Weber, L.; Mehlin, F. Synlett 1998, 661.

    11. [11]

      Che, C.; Xiang, J.; Wang, G. X.; Fathi, R.; Quan, J. M.; Yang, Z. J. Comb. Chem. 2007, 9, 982.

    12. [12]

      Mert-Balci, F.; Conrad, J.; Meindl, K.; Schulz, T.; Stalke, D.; Beifuss, U. Synthesis 2008, 3649.

    13. [13]

      McKeown, M. R.; Shaw, D. L.; Fu, H.; Liu, S.; Xu, X.; Marineau, J. J.; Huang, Y.; Zhang, X.; Buckley, D. L.; Kadam, A.; Zhang, Z.; Blacklow, S. C.; Qi, J.; Zhang, W.; Bradner, J. E. J. Med. Chem. 2014, 57, 9019. doi: 10.1021/jm501120z

    14. [14]

      Shaabani, A.; Soleimani, E.; Sarvary, A.; Rezayan, H.; Maleki, A. Chin. J. Chem. 2009, 27, 369. doi: 10.1002/cjoc.v27:2

    15. [15]

      Xi, G. L.; Liu, Z. Q. Tetrahedron 2015, 71, 9602. doi: 10.1016/j.tet.2015.10.080

    16. [16]

      Shinde, A. H.; Srilaxmi, M.; Satpathi, B.; Sharada, D. S. Tetrahedron Lett. 2014, 55, 5915. doi: 10.1016/j.tetlet.2014.08.126

    17. [17]

      Odell, L. R.; Nilsson, M.; Gising, J.; Lagerlund, O.; Muthas, D.; Nordqvist, A.; Karlen, A.; Larhed, M. Bioorg. Med. Chem. Lett. 2009, 19, 4790. doi: 10.1016/j.bmcl.2009.06.045

    18. [18]

      Guchhait, S. K.; Madaan, C. Tetrahedron Lett. 2011, 52, 56. doi: 10.1016/j.tetlet.2010.10.143

    19. [19]

      Guchhait, S. K.; Maadan, C. Synlett 2009, 628.

    20. [20]

      Rousseau, A. L.; Matlaba, P.; Parkinson, C. J. Tetrahedron Lett. 2007, 48, 4079. doi: 10.1016/j.tetlet.2007.04.008

    21. [21]

      Rostamnia, S.; Hassankhanib, A. RSC Adv. 2013, 3, 18626. doi: 10.1039/C2RA22527A

    22. [22]

      Akbarzadeh, R.; Shakibaei, G. I.; Bazgir, A. Monatsh. Chem. 2010, 141, 1077. doi: 10.1007/s00706-010-0372-7

    23. [23]

      Sanaeishoara, T.; Tavakkolia, H.; Mohave, F. Appl. Catal., A 2014, 470, 56. doi: 10.1016/j.apcata.2013.10.026

    24. [24]

      Shaabani, A.; Soleimani, E.; Maleki, A. Tetrahedron Lett. 2006, 47, 3031.

    25. [25]

      Lee, C. H.; Hsu, W. S.; Chen, C. H.; Sun, C. M. Eur. J. Org. Chem. 2013, 11, 2201.

    26. [26]

      Neochoritis, C. G.; Stotani, S.; Mishra, B.; Domling, A. Org. Lett. 2015, 17, 2002. doi: 10.1021/acs.orglett.5b00759

    27. [27]

      Kolo, K.; Sajadi, S. M. Lett. Org. Chem. 2013, 10, 688. doi: 10.2174/15701786113109990021

    28. [28]

      Bartoli, G.; Marcantoni, E.; Marcolini, M.; Sambri, L. Chem. Rev. 2010, 110, 6104. doi: 10.1021/cr100084g

  • Figure 1  Some examples of imidazo-fused drugs

    Figure 2  Single crystal structure of products 4m and 4o

    Table 1.  Optimization of GBB reaction conditionsa

    EntrySolventCeCl3•7H2O/ mol%T/℃Time/minYieldb/%
    1Ethanolcr.t.120N.R.d
    2Ethanol5r.t.15082
    3Ethanol53510086
    4Ethanol5606089
    5Ethanol10r.t.11096
    6Ethanol10606097
    7Methanol10609065
    8Trifluoroethanol10609078
    9H2O106016074
    10H2O108012083
    11e10606056
    12Ethanol10706096
    13Ethanol15606095
    14DMSO107012083
    15Toluene106012077
    16Dichloromethane103512081
    17Acetonitrile106012084
    a Reaction conditions: 5-chloropyridin-2-amine (1.0 mmol), benzaldehyde (1.0 mmol), t-butyl isocyanide (1.0 mmol); b Isolated yield; c No catalyst used; dN.R. means no reaction; eSolvent-free condition.
    下载: 导出CSV

    Table 2.  Synthesis of imidazo-fused heterocycles via GBB reactiona

    EntryAminoazine 1Aldehyde 2R3Compd.Time/hYieldb/%
    1R1=5-ClR2=Pht-Butyl4a197
    2R1=5-ClR2=4-ClC6H4t-Butyl4b193
    3R1=5-ClR2=4-CNC6H4t-Butyl4c194
    4R1=5-ClR2=4-MeOC6H4t-Butyl4d193
    5R1=5-ClR2=4-Et2NC6H4t-Butyl4e2.594
    6R1=5-ClR2=4-C8H7Ot-Butyl4f391
    7R1=5-ClR2=Phn-Butyl4g388
    8R1=5-ClR2=4-ClC6H4Cyclohexyl4h391
    92-NH2-pyrazineR2=PhCyclohexyl4i3.593
    102-NH2-thiazoleR2=Pht-Butyl4j384
    112-NH2-pyrazineR2=Pht-Butyl4k390
    122-NH2-pyrimidineR2=3, 5-Me2C6H3t-Butyl4l3.585
    13R1=HR2=3-BrC5H3NCyclohexyl4m685
    143-NH2-1, 2, 4-triazoleR2=3-BrC5H3Nt-Butyl4n687
    152-NH2-5-Cl-pyrazineR2=3-BrC5H3Nt-Butyl4o680
    a Reaction conditions: aldehyde (1.0 mmol), aminoazine (1.0 mmol), isocyanide (1.0 mmol), CeCl3•7H2O (10 mol %), ethanol, 60 ℃; bIsolated yield.
    下载: 导出CSV

    Table 3.  Comparison of efficiency of CeCl3•7H2O and LaCl3• 7H2O in the synthesis of products 4o and 4n

    Entry Compd. Catalysta Yieldb/%
    1 4o CeCl3•7H2O 80
    2 4o LaCl3•7H2O 83
    3 4n CeCl3•7H2O 87
    4 4n LaCl3•7H2O 76
    a10 mol%; bIsolated yield.
    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  5
  • 文章访问数:  775
  • HTML全文浏览量:  85
文章相关
  • 发布日期:  2017-05-25
  • 收稿日期:  2017-01-10
  • 修回日期:  2017-02-12
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章