具有可见光增强芬顿活性的II型2D/2D Cu2ZnSnS4/Bi2WO6异质结

郭莉 张开来 韩宣宣 赵强 张媛媛 戚勉 王丹军 付峰

引用本文: 郭莉,  张开来,  韩宣宣,  赵强,  张媛媛,  戚勉,  王丹军,  付峰. 具有可见光增强芬顿活性的II型2D/2D Cu2ZnSnS4/Bi2WO6异质结[J]. 催化学报, 2020, 41(3): 503-513. doi: S1872-2067(19)63524-2 shu
Citation:  Li Guo,  Kailai Zhang,  Xuanxuan Han,  Qiang Zhao,  Yuanyuan Zhang,  Mian Qi,  Danjun Wang,  Feng Fu. 2D/2D type-II Cu2ZnSnS4/Bi2WO6 heterojunctions to promote visible-light-driven photo-Fenton catalytic activity[J]. Chinese Journal of Catalysis, 2020, 41(3): 503-513. doi: S1872-2067(19)63524-2 shu

具有可见光增强芬顿活性的II型2D/2D Cu2ZnSnS4/Bi2WO6异质结

  • 基金项目:

    国家自然科学基金(21663030,21666039);北京化工大学有机-无机复合材料国家重点实验室开放项目(oic-201901009);陕西省科技厅(2018TSCXL-NY-02-01,2013K11-08,2013SZS20-P01);延安市科技局工业攻关项目(2018KG-04);延安大学研究生创新项目(YCX201988).

摘要: 高级氧化工艺(AOPs)是一种处理有机污染物的极具吸引力的技术.大量的前期研究工作集中在通过芬顿反应(Fenton)降解有机污染物.然而,芬顿反应需要在酸性条件下进行,必须在其过程中进行预处理.同时,反应后产生的含铁污泥需要进一步处理以满足排放要求,从而限制了芬顿反应的发展.作为另一种AOPs,光催化技术因反应条件温和、操作简单和选择性好等优点受到广泛关注.研究表明,各种铁基和铜半导体光催化材料形成光-芬顿(Photo-Fenton)系统,可有效解决芬顿反应中高价金属离子/低价金属离子的循环问题.为了充分利用芬顿氧化技术和光催化氧化技术在降解有机污染物方面的各自优势,构建具有宽太阳光谱响应的新型光芬顿催化剂具有重要意义.
由于其独特的层状结构和优越的有机物光催化性能,Bi2WO6作为结构最为简单的钙钛矿型层状氧化物,其禁带宽度为2.6-2.8eV,可响应可见光,已成研究最多的光催化材料之一.研究表明,将Bi2WO6与合适的助催化剂耦合以构建异质结是提高光生载流子分离效率、拓宽Bi2WO6可见光响应范围的一种有效策略.在众多的窄带隙半导体助催化材料中,Cu2ZnSnS4作为一种p-型窄带隙半导体,可以响应可见光甚至近红外光.近年来,已经广泛报道了Cu2ZnSnS4可以作为与其他半导体光催化剂进行结合以提高光催化活性的有效助催化剂.
在本文中,新型Cu2ZnSnS4/Bi2WO6(CZTS/BWO)异质结构通过简单的二次溶剂热法构建.异质结的成功形成得到了一系列表征方法的证实,比如XPS和HR-TEM.光催化活性结果表明,制备的CZTS/BWO异质结对有机污染物的降解具有优异的光催化性能,特别是当CZTS相对于异质结中BWO的质量分数为2%时.此外,加入过氧化氢(H2O2)可进一步提高染料和抗生素的降解效率.增强的光催化和光芬顿降解性能主要是由于BWO的引入,其提供了更多的活性位点,扩展了太阳光谱响应范围并加速了Cu(II)/Cu(I)的循环.催化剂的催化活性在经过四次循环实验后并没有显著降低.最终我们合理假设了光催化和光-芬顿催化机理.本项研究可为设计新型光-芬顿催化剂提供新的视角,即共同利用光催化活性和芬顿活性进行废水中残留有机物的净化.

English

    1. [1] Z. Zhang, J. Huang, M. Zhang, Q. Yuan, B. Dong, Appl. Catal. B-Environ., 2015, 163, 298-305.

    2. [2] X. Chen, L. Liu, Y. Feng, L. Wang, Z. Bian, H. Li, Z. L. Wang, Mater. Today, 2017, 20, 501-506.

    3. [3] Z. Cetecioglu, B. Ince, M. Gros, S. Rodriguez-Mozaz, D. Barcelo, D. Orhon, O. Ince, Water Res., 2013, 47, 2959-2969.

    4. [4] J. H. Ramirez, F. J. Maldonado-Hódar, A. F. Pérez-Cadenas, C. Moreno-Castilla, C. A. Costa, L. M. Madeira, Appl. Catal. B-Environ., 2007, 75, 312-323

    5. [5] S. Azimi, A. Nezamzadeh-Ejhieh, J. Mol. Catal. A:Chem., 2015, 408, 152-160.

    6. [6] J. Z. Li, M. J. Zhou, Z. F. Ye, H. Q. Wang, C. C. Ma, P. W. Huo, Y. S. Yan, RSC Adv., 2015, 5, 91177-91189.

    7. [7] K. Wang, Y. Li, G. Zhang, J. Li, X. Wu, Appl. Catal. B-Environ., 2019, 240, 39-49.

    8. [8] H. J. H. Fenton, J. Chem. Soc., 1894, 65, 899-910.

    9. [9] H. R. Eisenhauer, J. Water Pollut. Control Federation, 1964, 36, 1116-1128.

    10. [10] Navalon, M. Miguel, R. Martin, M. Alvaro, H. Garcia, J. Am. Chem. Soc., 2011, 133, 2218-2226.

    11. [11] X. N. Li, X. Huang, S. B. Xi, S. Miao, J. Ding, W. Z. Cai, S. Liu, X. L. Yang, H. B. Yang, J. J Guo, J. H. Wang, Y. Q. Huang, T. Zhang, B. Liu, J. Am. Chem. Soc., 2018, 140, 12469-12475.

    12. [12] E. Brillas, I. Sirés, M. A. Oturan, Chem. Rev., 2009, 109, 6570-6631.

    13. [13] S. Guo, N. Yuan, G. K. Zhang, J. C. Yu, Microporous Mesoporous Mater., 2017, 238, 62-68.

    14. [14] S. Guo, Z. X. Yang, Z. P. Wen, H. Fida, G. K. Zhang, J. Y. Chen, J. Colloid Interface Sci., 2018, 532, 441-448.

    15. [15] S. W. Zhang, H. H. Gao, Y. S. Huang, X. X. Wang, T. Hayat, J. X. Li, X. J. Xu, X. K. Wang, Environ. Sci.:Nano, 2018, 5, 1179-1190.

    16. [16] A. Fujishima, K. Honda, Nature, 1972, 238, 37-38.

    17. [17] A. Kudo, S. Hijii, Chem. Lett., 1999, 10, 1103-1104.

    18. [18] Z. Ding, G. Q. Lu, P. F. Greenfield, J. Phys. Chem. B, 2000, 104, 4815-4820.

    19. [19] J. Tian, Y. H. Sang, G. W. Yu, H. D. Jiang, X. N. Mu, H. Liu, Adv. Mater., 2013, 25, 5075-5080.

    20. [20] M. L. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, K. O'Shea, M. H. Entezari, D. D. Dionysiou, Appl. Catal. B-Environ., 2012, 125, 331-349.

    21. [21] Y. B. Zhang, C. Xu, F. C. Wan, D. Zhou, L. Yang, H. S. Gu, J. Xiong, J. Alloy. Compd., 2019, 788, 1154-1161.

    22. [22] X. Chu, G. Shan, C. Chang, Y. Fu, L. Yue, L. Zhu, Front. Environ. Sci. Eng., 2014, 10, 211-218.

    23. [23] L. Yue, S. Wang, G. Shan, W. Wu, L. Qiang, L. Zhu, Appl. Catal. B-Environ., 2015, 176-177, 11-19.

    24. [24] B. Li, C. Lai, G. Zeng, L. Qin, H. Yi, D. Huang, C. Zhou, X. Liu, M. Cheng, P. Xu, C. Zhang, F. Huang, S. Liu, ACS Appl. Mater. Interfaces, 2018, 10, 18824-18836.

    25. [25] Zhang, C. Yang, K. L. Lv, Y. C. Lu, Q. Li, X. F. Wu, Y. H. Li, X. F. Li, J. J. Fan, M. Li, Chin. J. Catal., 2019, 40, 755-764.

    26. [26] T. Huang, Y. H. Li, X. F. Wu, K. L. Lv, Q. Li, M. Li, D. Y. Du, H. P. Ye, Chin. J. Catal., 2018, 39, 718-727.

    27. [27] X. C. Meng, Z. Z Li, H. M. Zeng, J. Chen, Z. S. Zhang, Appl. Catal. B-Environ., 2017, 210, 160-172.

    28. [28] J. G. Wang, H. Liang, C. Zhang, B. Jin, Y. Men, Appl. Catal. B-Environ., 2019, 256, 117874.

    29. [29] H. Anwer, J. W. Park, Appl. Catal. B-Environ., 2019, 243, 438-447.

    30. [30] L. Zhang, W. Z. Wang, M. Shang, S. M. Sun, J. H. Xu, J. Hazard. Mater., 2009, 172, 1193-1197.

    31. [31] Q. Xiao, J. Zhang, C. Xiao, X. K. Tan, Catal. Commun., 2008, 9, 1247-1253.

    32. [32] G. Q. Shan, Y. Fu, X. L. Chu, C. Chang, L. Y. Zhu, J. Colloid Interface Sci., 2015, 444, 123-131.

    33. [33] T. Gan, Y. Li, X. Z. Wang, X. T. Wang, C. W. Wang, Appl. Surf. Sci., 2017, 408, 60-67.

    34. [34] X. T. Wang, Y. Li, X.Q. Zhang, J. F. Li, Y. N. Luo, C. W. Wang, Appl. Surf. Sci., 2019, 479, 86-95.

    35. [35] Y. G. Zhou, Y. F. Zhang, M. S. Lin, J. L. Long, Z. Z. Zhang, H. X. Lin, Jeffrey C. S. Wu, X. X. Wang, Nat. Commun., 2015, 6, 8340.

    36. [36] D. J. Wang, L. Guo, Y. Z. Zhen, L. L. Yue, G. L. Xue, F. Fu, J. Mater. Chem. A, 2014, 2, 11716-11727.

    37. [37] C. Wang, H. Zhang, F. Li, L. Zhu, Environ. Sci. Technol., 2010, 44, 6843-6848.

    38. [38] Y. Huang, Z. Ai, W. Ho, M. Chen, S. Lee, J. Phys. Chem. C, 2010, 114, 6342-6349.

    39. [39] M. K. Kuusika, K. Timmoa, M. Danilsona, M. Altosaar, M. Grossberga, K. Ernits, Appl. Surf. Sci., 2015, 357, 795-798.

    40. [40] X. Zhang, P. Zhang, L. J. Wang, H. Q. Gao, J. T. Zhao, C. H. Liang, J. H. Hu, G. S. Shao, Appl. Catal. B-Environ., 2016, 192, 17-25.

    41. [41] Z. Cai, Y. Zhou, S. Ma, S. Li, H. Yang, S. Zhao, X. Zhong, W. Wu, J. Photochem. Photobiol. A, 2017, 348, 168-178.

    42. [42] F. Fu, H. D. Shen, X. Sun, W. W. Xue, A. Shoneyec, J. N. Ma, L. Luo, D. J. Wang, J. G. Wang, J. W. Tang, Appl. Catal. B-Environ., 2019, 247, 150-162.

    43. [43] X. Y. Kong, W. Q. Lee, A. R. Mohamed, S. P. Chai, Chem. Eng. J., 2019, 372, 1183-1193.

  • 加载中
计量
  • PDF下载量:  2
  • 文章访问数:  1221
  • HTML全文浏览量:  44
文章相关
  • 收稿日期:  2019-08-06
  • 修回日期:  2019-09-23
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章