金属-空气电池中双功能电催化剂微纳结构设计

石芳 朱雪峰 杨维慎

引用本文: 石芳,  朱雪峰,  杨维慎. 金属-空气电池中双功能电催化剂微纳结构设计[J]. 催化学报, 2020, 41(3): 390-403. doi: S1872-2067(19)63514-X shu
Citation:  Fang Shi,  Xuefeng Zhu,  Weishen Yang. Micro-nanostructural designs of bifunctional electrocatalysts for metal-air batteries[J]. Chinese Journal of Catalysis, 2020, 41(3): 390-403. doi: S1872-2067(19)63514-X shu

金属-空气电池中双功能电催化剂微纳结构设计

  • 基金项目:

    国家自然科学基金(91545202,U1508203);中国科学院战略重点研究项目(XDB17000000);中国科学院青年创新促进会、辽宁振兴人才工程(XLYC1807066).

摘要: 金属-空气二次电池在可再生电能的存储和转换方面具有广阔的应用前景.在金属-空气二次电池的空气侧,放电时发生氧还原反应(ORR),充电时发生氧析出反应(OER).然而,ORR和OER反应的动力学过程缓慢,因此限制了金属-空气二次电池的实际应用.因此,发展高性能ORR和OER电催化剂对金属-空气二次电池的发展尤为重要.目前,大多数的研究集中在ORR或OER的单功能电催化剂上,而关于双功能电催化剂的研究和综述相对较少.两个反应均具有较高的过电位和较缓慢的动力学过程,而且充电过程的高电压会导致ORR催化剂失活,反之亦然.因此,开发针对这两个反应均具有高活性和高稳定性的双功能电催化剂极具挑战性.近年来,研究者对具有低成本和高性能双功能电催化剂进行了探索.这些双功能电催化剂包括碳基材料,过渡金属材料和复合材料.双功能电催化剂可以通过提高本征活性和表观活性两种策略来提高其整体的活性.其中,本征活性与晶体结构和电子结构密切相关,即可以通过调节晶体结构和电子结构来提高其本征活性.例如,可以改变金属-氧键的强度、氧空位浓度等来调变电催化活性.在碳基材料中掺杂杂原子可以改变碳的电荷密度分布,从而实现对电催化活性的提高.此外,其表观活性还可以通过改变形貌并利用协同作用来改善.构建特殊微纳结构是提高电催化活性的最常用策略之一.在这种情况下,电催化剂具有较高的比表面积,大量的活性位点和良好的电子传导性.同时,复合电催化剂组分之间在加速电催化过程中的协同作用不容忽视.本文将聚焦双功能电催化剂的微纳结构设计,并简要讨论了纳米结构的精细调控和对反应机理的认识.
我们认为,未来的工作应继续加强ORR和OER的新型双功能电催化剂的开发,发展更多的合成方法对电催化剂的微纳结构进行调变,并对反应机理进行更深入的研究.首先,通过对结构的精细调变提高电催化剂的本征活性和表观活性.此外,通过多种原位表征方法揭示反应机理,这有助于电催化剂的设计和催化活性的进一步提升.基于此,开发出性能优异的双功能电催化剂以加快用于存储和转换可再生能源的可充电金属-空气二次电池的商业化进程.

English

    1. [1] D. U. Lee, P. Xu, Z. P. Cano, A. G. Kashkooli, M. G. Park, Z. Chen, J. Mater. Chem. A, 2016, 4, 7107-7134.

    2. [2] Z.-F. Huang, J. Wang, Y. Peng, C.-Y. Jung, A. Fisher, X. Wang, Adv. Energy Mater., 2017, 7, 1700544.

    3. [3] D. Chen, C. Chen, Z. M. Baiyee, Z. Shao, F. Ciucci, Chem. Rev., 2015, 115, 9869-9921.

    4. [4] Y. Huang, Y. Wang, C. Tang, J. Wang, Q. Zhang, Y. Wang, J. Zhang, Adv. Mater., 2018, 1803800.

    5. [5] J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. Phys. Chem. B, 2004, 108, 17886-17892.

    6. [6] M. Mukherjee, M. Samanta, P. Banerjee, K. K. Chattopadhyay, G. P. Das, Electrochim. Acta, 2019, 296, 528-534.

    7. [7] C. Deng, R. He, W. Shen, M. Li, T. Zhang, Phys. Chem. Chem. Phys., 2019, 21, 6900-6907.

    8. [8] S. Sharma, C. Zeng, A. A. Petersona, J. Chem. Phys., 2019, 150, 041704.

    9. [9] Y. Zhuang, J. Chou, P.-Y. Liu, T.-Y. Chen, J. Kai, A. Hu, H.-Y. T. Chen, J. Mater. Chem. A, 2018, 6, 23326-23335.

    10. [10] Y. Nie, L. Li, Z. Wei, Chem. Soc. Rev., 2015, 442168-2201.

    11. [11] M. L. Liu, Z. P. Zhao, X. F. Duan, Y. Huang, Adv. Mater., 2019, 31, 1802234.

    12. [12] N. K. Chaudhari, J. Joo, B. Kim, B. Ruqia, S. Choi, K. Lee, Nanoscale, 2018,10, 20073-20088.

    13. [13] L. Zhang, L. T. Roling, X. Wang, M. Vara, M. Chi, J. Liu, S. Choi, J. Park, J. A. Herron, Z. Zie, M. Mavrikakis, Y. Xia, Science, 2015, 349, 412-416.

    14. [14] H. Shi, Y. Shen, F. He, Y. Li, A. Liu, S. Liu, Y. Zhang, J. Mater. Chem. A, 2014, 2, 15704-15716.

    15. [15] P. Yin, T. Yao, Y. Wu, L. Zheng, Y. Lin, W. Liu, H. Ju, J. Zhu, X. Hong, Z. Deng, G. Zhou, S. Wei, Y. Li, Angew. Chem. Int. Ed., 2016, 55, 10800-10805.

    16. [16] L. Li, J. He, Y. Wang, X. Lv, X. Gu, P. Dai, D. Liu, X. Zhao, J. Mater. Chem. A, 2019, 7, 1964-1988.

    17. [17] S. Wang, X. Yan, K.-H. Wu, X. Chen, J.-M. Feng, P. Lu, H. Feng, H.-M. Cheng, J. Liang, S. X. Dou, Carbon, 2019, 144, 798-804.

    18. [18] W. Li, C. Min, F. Tan, Z. Li, B. Zhang, R. Si, M. Xu, W. Liu, L. Zhou, Q. Wei, Y. Zhang, X. Yang, ACS Nano, 2019, 13, 3177-3187.

    19. [19] H. Tan, J. Tang, J. Kim, Y. V. Kaneti, Y.-M. Kang, Y. Sugahara, Y. Yamauchi, J. Mater. Chem. A, 2019, 7, 1380-1393.

    20. [20] N. T. Suen, S. F. Hung, Q. Quan, N. Zhang, Y. J. Xu, H. M. Chen, Chem. Soc. Rev., 2017, 46, 337-365.

    21. [21] F. Lu, M. Zhou, Y. Zhou, X. Zeng, Small, 2017, 13, 1701931.

    22. [22] N. Mamaca, E. Mayousse, S. Arrii-Clacens, T.W. Napporn, K. Servat, N. Guillet, K.B. Kokoh, Appl. Catal. B:Environm., 2012, 111-112, 376-380.

    23. [23] T. Reier, M. Oezaslan, P. Strasser, ACS Catal., 2012, 2, 1765-177210.

    24. [24] Z.-W. Gao, J.-Y. Liu, X.-M. Chen, X.-L. Zheng, J. Mao, H. Liu, T. Ma, L. Li, W.-C. Wang, X.-W. Du, Adv. Mater., 2019, 31, 1804769.

    25. [25] B.-J. Kim, E. Fabbri, D. F. Abbott, X. Cheng, A. H. Clark, M. Nachtegaal, M. Borlaf, I. E. Castelli, T. Graule, T. J. Schmidt, J. Am. Chem. Soc., 2019, 141, 5231-5240.

    26. [26] S. Sun, Y. Sun, Y. Zhou, S. Xi, X. Ren, B. Huang, H. Liao, L. P. Wang, Y. Du, Z. Xu, Angew. Chem. Int. Ed., 2019, 58, 6042-6047.

    27. [27] C. Zhu, H. Li, S. Fu, D. Du, Y. Lin, Chem. Soc. Rev., 2016, 45, 517-531.

    28. [28] M. Tahir, L. Pan, F. Idrees, X. Zhang, L. Wang, J.-J. Zou, Z. L. Wang, Nano Energy, 2017, 37, 136-157.

    29. [29] W. T. Hong, M. Risch, K. A. Stoerzinger, A. Grimaud, J. Suntivich, Y. Shao-Horn, Energy Environ. Sci., 2015, 8, 1404-1427.

    30. [30] J. O. Bockris, T. Otagawa, J. Phys. Chem. A, 1983, 87, 2960-2971.

    31. [31] K. A. Stoerzinger, W. S. Choi, H. Jeen, H. N. Lee, Y. Shao-Horn, J. Phys. Chem. Lett., 2015, 6, 487-492.

    32. [32] J. R. Petrie, V. R. Cooper, J. W. Freeland, T. L. Meyer, Z. Zhang, D. A. Lutterman, H. N. Lee, J. Am. Chem. Soc., 2016, 138, 2488-2491.

    33. [33] S. F. Yuk, V. R. Cooper, Phys. Chem. Chem. Phys., 2019, 21, 4738-4745.

    34. [34] S. K. Singh, K. Takeyasu, J. Nakamura, Adv. Mater., 2019, 31, 1804297.

    35. [35] N. Jia, Q. Weng, Y. Shi, X. Shi, X. Chen, P. Chen, Z. An, Y. Chen, Nano Res., 2018, 11, 1905-1916.

    36. [36] Z. Cui, S. Wang, Y. Zhang, M. Cao, J. Power Sources, 2014, 259, 138-144.

    37. [37] L. Zhang, J. Niu, L. Dai, Z. Xia, Langmuir, 2012, 28, 7542-7550.

    38. [38] K. Qu, Y. Zheng, Y. Jiao, X. Zhang, S. Dai, S.-Z. Qiao, Adv. Energy Mater., 2017, 7, 1602068.

    39. [39] L. Yang, S. Jiang, Y. Zhao, L. Zhu, S. Chen, X. Wang, Q. Wu, J. Ma, Y. Ma, Z. Hu, Angew. Chem., Int. Ed., 2011, 50, 7132.

    40. [40] J. P. Paraknowitsch, A. Thomas, Energy Environ. Sci., 2013, 6, 2839-2855.

    41. [41] C. Zhang, N. Mahmood, H. Yin, F. Liu, Y. Hou, Adv. Mater., 2013, 25, 4932-4937.

    42. [42] Y. Jia, L. Zhang, A. Du, G. Gao, J. Chen, X. Yan, C. L. Brown, X. Yao, Adv. Mater., 2016, 28, 9532-9538.

    43. [43] C. Tang, H. F. Wang, X. Chen, B. Q. Li, T. Z. Hou, B. Zhang, Q. Zhang, M. M. Titirici, F. Wei, Adv. Mater., 2016, 28, 6845-6851.

    44. [44] H. F. Wang, C. Tang, B, Wang, B. Q. Li, X. Cui, Q. Zhang, Energy Storage Mater., 2018, 15, 124-130.

    45. [45] H. Osgood, S. V. Devaguptapu, H. Xu, J. Cho, G. Wu, Nano Today, 2016, 11, 601-625.

    46. [46] Y. Zhu, W. Zhou, Z. Shao, Small, 2017,13, 1603793.

    47. [47] J.-I. Jung, H. Y. Jeong, M. G. Kim, G. Nam, J. Park, J. Cho, Adv. Mater., 2015, 27, 266-271.

    48. [48] H. Liu, K. Zhu, Y. Liu, W. Li, L. Cai, X. Zhu, M. Cheng, W. Yang, Elec-trochim. Acta, 2018, 279, 224-230.

    49. [49] K. Zhu, H. Liu, X. Li, Q. Li, J. Wang, X. Zhu, W. Yang, Electrochim. Acta, 2017, 241, 433-439.

    50. [50] K. Zhu, H. Liu, M. Li, X. Li, J. Wang, X. Zhu, W. Yang, J. Mater. Chem. A, 2017, 5, 7753-7758.

    51. [51] Q. Wang, D. O'Hare, Chem. Rev., 2012, 112, 4124-4155.

    52. [52] G. Fan, F. Li, D. G. Evans, X. Duan, Chem. Soc. Rev., 2014, 437040-7066.

    53. [53] D. Zhou, Z. Cai, X. Lei, W. Tian, Y. Bi, Y. Jia, N. Han, T. Gao, Q. Zhang, Y. Kuang, J. Pan, X. Sun, X. Duan, Adv. Energy Mater., 2018, 8, 1701905.

    54. [54] L. Wei, H. E. Karahan, S. Zhai, H. Liu, X. Chen, Z. Zhou, Y. Lei, Z. Liu, Y. Chen, Adv. Mater., 2017, 29, 1701410.

    55. [55] X. Fan, F. Kong, A. Kong, A. Chen, Z. Zhou, Y. Shan, ACS Appl. Mater. Interfaces, 2017, 9, 32840-32850.

    56. [56] T. Wang, G. Nam, Y. Jin, X. Wang, P. Ren, M. G. Kim, J. Liang, X. Wen, H. Jang, J. Han, Y. Huang, Q. Li, J. Cho, Adv. Mater., 2018, 30, e1800757.

    57. [57] W.G. Hardin, D.A. Slanac, X. Wang, S. Dai, K.P. Johnston, K.J. Ste-venson, J. Phys. Chem. Lett., 2013, 4, 1254-1259.

    58. [58] M. Asnavandi, Y. Yin, Y. Li, C. Sun, C. Zhao, ACS Energy Lett., 2018, 3, 1515-1520

    59. [59] K. Zhu, T. Wu, M. Li, R. Lu, X. Zhu, W. Yang, J. Mater. Chem. A, 2017, 5, 19836-19845.

    60. [60] C.-F. Chen, G. King, R. M. Dickerson, P. A. Papin, S. Gupta, W. R. Kellogg, G. Wu, Nano Energy, 2015, 13, 423-432.

    61. [61] J. Du, T. Zhang, F. Cheng, W. Chu, Z. Wu, J. Chen, Inorg. Chem., 2014, 53, 9106-9114.

    62. [62] T. Ling, D. Y. Yan, Y. Jiao, H. Wang, Y. Zheng, X. Zheng, J. Mao, X. W. Du, Z. Hu, M. Jaroniec, S. Z. Qiao, Nat. Commun., 2016, 7, 12876.

    63. [63] X. Liu, L. Wang, P. Yu, C. Tian, F. Sun, J. Ma, W. Li, H. Fu, Angew. Chem. Int. Ed., 2018, 57, 16166-16170.

    64. [64] Z. Zhang, X. Wang, G. Cui, A. Zhang, X. Zhou, H. Xu, L. Gu, Nanoscale, 2014, 6, 3540-3544.

    65. [65] T. Gao, Z. Jin, Y. Zhang, G. Tan, H. Yuan, D. Xiao, Electrochim. Acta, 2017, 258, 51-60.

    66. [66] G.-L. Tian, Q. Zhang, B. Zhang, Y.-G. Jin, J.-Q. Huang, D. S. Su, F. Wei, Adv. Funct. Mater., 2014, 24, 5956-5961.

    67. [67] R. Nandan, K. K. Nanda, J. Mater. Chem. A, 2017, 5, 16843-16853.

    68. [68] G. L. Tian, M. Q. Zhao, D. Yu, X. Y. Kong, J. Q. Huang, Q. Zhang, F. Wei, Small, 2014, 10, 2251-2259.

    69. [69] Y. J. Li, L. Cui, P. F. Da, K. W. Qiu, W. J. Qin, W. B. Hu, X. W. Du, K. Davey, T. Ling, S. Z. Qiao, Adv. Mater., 2018, 30, e1804653.

    70. [70] Y. Guo, P. Yuan, J. Zhang, Y. Hu, I. S. Amiinu, X. Wang, J. Zhou, H. Xia, Z. Song, Q. Xu, S. Mu, ACS Nano, 2018, 12, 1894-1901.

    71. [71] Y. Tang, R. Liu, S. Liu, B. Zheng, Y. Lu, R. Fu, D. Wu, M. Zhang, M. Rong, Carbon, 2019, 141, 704-711.

    72. [72] K. Li, D. Guo, J. Kang, B. Wei, X. Zhang, Y. Chen, ACS Sustain. Chem. Eng., 2018, 6, 14641-14651.

    73. [73] X. Wang, L. Yu, B. Y. Guan, S. Song, X. W. D. Lou, Adv. Mater., 2018, 30, 1801211.

    74. [74] W. Xiang, Y. Zhao, Z. Jiang, X. Li, H. Zhang, Y. Sun, Z. Ning, F. Du, P. Gao, J. Qian, K. Kato, M. Yamauchi, Y. Sun, J. Mater. Chem. A, 2018, 6, 23366-23377.

    75. [75] S. A. Chala, M.-C. Tsai, W.-N. Su, K. B. Ibrahim, A. D. Duma, M.-H. Yeh, C.-Y. Wen, C.-H. Yu, T.-S. Chan, H. Dai, B.-J. Hwang, ACS Catal., 2018, 9, 117-129.

    76. [76] Z. Wang, J. Ang, B. Zhang, Y. Zhang, X. Y. D. Ma, T. Yan, J. Liu, B. Che, Y. Huang, X. Lu, Appl. Catal. B, 2019, 254, 26-36.

    77. [77] Z. Q. Liu, H. Cheng, N. Li, T. Y. Ma, Y. Z. Su, Adv. Mater., 2016, 28, 3777-3784.

    78. [78] K. Zhu, M. Li, X. Li, X. Zhu, J. Wang, W. Yang, Chem. Commun., 2016, 52, 11803-11806.

    79. [79] Y. Wu, X. Qiu, F. Liang, Q. Zhang, A. Koo, Y. Dai, Y. Lei, X. Sun, Appl. Catal. B, 2019, 241, 407-414.

    80. [80] L. Dong, J. Su, Y. Wang, Y. Zhang, X. Chen, S. Zhou, J. Zang, Catal. Commun., 2019, 129, 105742.

    81. [81] K. Zhu, X. Zhu, W. Yang, Angew. Chem. Int. Ed., 2019, 58, 1252-1265.

  • 加载中
计量
  • PDF下载量:  21
  • 文章访问数:  1360
  • HTML全文浏览量:  151
文章相关
  • 收稿日期:  2019-07-24
  • 修回日期:  2019-09-23
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章