Citation: Mei-Rong Liu, Yang-Peng Lin, Kai Wang, Shumei Chen, Fei Wang, Tianhua Zhou. Hierarchical cobalt phenylphosphonate nanothorn flowers for enhanced electrocatalytic water oxidation at neutral pH[J]. Chinese Journal of Catalysis, 2020, 41(10): 1654-1662. doi: S1872-2067(19)63513-8
多级纳米喇叭花苯基膦酸钴在中性pH下高效电催化水氧化
在已报道的过渡金属催化剂中,原位电沉积制备的磷酸钴(Co-Pi)被认为是迄今为止最有效的OER催化剂之一.尽管Co-Pi展现出诱人的性能,但无序的非晶态结构限制了对其结构进行精确描述,至今它的详细结构尚没有定论.由于其在结构方面的局限性,影响了进一步揭示水氧化催化剂构-效关系及深入理解水氧化机理.作为引入磷酸基构筑的晶态金属有机骨架材料,其柔性的多阴离子官能团可能带来更多可调控的结构因素,其丰富的可调控结构因素有助于从原子-分子水平上揭示水氧化催化剂构-效关系及加深理解其反应机理,使其有望成为一种最有希望的新型水氧化催化剂.近来,在研究水氧化功能的金属有机膦酸盐材料时,我们发现八面体钴的桥联方式以及钴与钴、钴与氧键长细微差别,却展现出不同水氧化活性.然而,迄今为止,关于水氧化功能的金属有机骨架材料特别膦酸盐骨架材料研究仍未见系统研究,并且目前报道的水氧化功能金属有机膦酸盐材料,主要是从晶体结构角度揭示其构-效关系以及理解其反应机理,此外,尚未见相关工作探讨形貌对OER催化性能影响.系统研究形貌自组装机制并进一步揭示它们对材料水氧化性能的影响无疑至关重要.
因此本文发展一种结构导向策略,通过水热法构建不同形貌的苯膦酸钴(CoP-X)OER催化剂,系统考察了它们的自组装机理及催化性能.研究发现,在不使用结构导向试剂时,合成的CoP-0为不规则的片状结构,而当引入分子量为40000的PVP结构导向试剂,能获得针状形貌的CoP-1.当分子量增加到58000,能进一步组装得到层状纳米喇叭花状的CoP-2.这可能是因为低分子量的PVP的官能团(N和O)与金属中心相互作用阻止纳米片的团聚.当PVP分子量进一步增加,导致羟基数量随着增加,材料表面的氢键相互作用从而加速材料生长.为了进一步研究羟基对形貌的影响,用乙二醇代替PVP并加入尿素和碳酸铵,则合成出均匀层状花形貌的CoP-3.我们推测可能是羟基的数量在调整形貌方面起着决定作用,而且尿素可以增加溶液碱度,促进多级结构的生长.电催化水氧化结果表明,在0.1M PBs溶液中(pH=7.0),纳米喇叭花状的CoP-2的OER活性最好,在1mA cm-2处的过电势仅为393mV,Tafel斜率为81mV dec-1.这为了发展新型金属有机膦酸盐水氧化催化剂提供了一个新思路.
English
Hierarchical cobalt phenylphosphonate nanothorn flowers for enhanced electrocatalytic water oxidation at neutral pH
-
Key words:
- Phosphate
- / Morphology
- / Electrocatalysis
- / Neutral pH
- / Oxygen evolution reaction
- / Phosphonates
-
-
[1] F. Raziq, L. Sun, Y. Wang, X. Zhang, M. Humayun, S. Ali, L. Bai, Y. Qu, H. Yu, L. Jing, Adv. Energy Mater., 2018, 8, 1701580.
-
[2] S. W. Boettcher, Nat. Catal., 2018, 1, 814-815.
-
[3] G. M. Whitesides, G. W. Crabtree, Science, 2007, 315, 796-798.
-
[4] G. Glenk, S. Reichelstein, Nat. Energy, 2019, 4, 216-222.
-
[5] J.-P. Zou, Y. Chen, S.-S. Liu, Q.-J. Xing, W.-H. Dong, X.-B. Luo, W.-L. Dai, X. Xiao, J.-M. Luo, J. Crittenden, Water Res., 2019, 150, 330-339.
-
[6] H. Huang, J. Lin, G. Zhu, Y. Weng, X. Wang, X. Fu, J. Long, Angew. Chem. Int. Ed., 2016, 55, 8314-8318.
-
[7] G. Cui, X. Yang, Y. Zhang, Y. Fan, P. Chen, H. Cui, Y. Liu, X. Shi, Q. Shang, B. Tang, Angew. Chem. Int. Ed., 2019, 58, 1340-1344.
-
[8] Y. Guo, P. Wang, J. Qian, Y. Ao, C. Wang, J. Hou, Appl. Catal. B, 2018, 234, 90-99.
-
[9] W. Liu, J. Shen, X. Yang, Q. Liu, H. Tang, Appl. Surf. Sci., 2018, 456, 369-378.
-
[10] T. Zhou, D. Wang, S. Chun-Kiat Goh, J. Hong, J. Han, J. Mao, R. Xu, Energy Environ. Sci., 2015, 8, 526-534.
-
[11] H. N. Nong, T. Reier, H.-S. Oh, M. Gliech, P. Paciok, T. H. T. Vu, D. Teschner, M. Heggen, V. Petkov, R. Schlögl, T. Jones, P. Strasser, Nat. Catal., 2018, 1, 841-851.
-
[12] M. R. Liu, Q. L. Hong, Q. H. Li, Y. Du, H. X. Zhang, S. Chen, T. Zhou, J. Zhang, Adv. Funct. Mater., 2018, 28, 1801136.
-
[13] Z. Wang, W. Xu, X. Chen, Y. Peng, Y. Song, C. Lv, H. Liu, J. Sun, D. Yuan, X. Li, X. Guo, D. Yang, L. Zhang, Adv. Funct. Mater., 2019, 29, 1902875.
-
[14] Z. Chen, Q. Huang, B. Huang, F. Zhang, C. Li, Chin. J. Catal., 2019, 40, 38-42.
-
[15] F. Li, H. Li, Y. Zhu, J. Du, Y. Wang, L. Sun, Chin. J. Catal., 2017, 38, 1812-1817.
-
[16] Y. Li, F.-M. Li, X.-Y. Meng, S.-N. Li, J.-H. Zeng, Y. Chen, ACS Catal., 2018, 8, 1913-1920.
-
[17] P. Cai, J. Huang, J. Chen, Z. Wen, Angew. Chem. Int. Ed., 2017, 56, 4858-4861.
-
[18] X.-T. Wang, T. Ouyang, L. Wang, J.-H. Zhong, T. Ma, Z.-Q. Liu, Angew. Chem. Int. Ed., 2019, 10.1002/anie.201907595.
-
[19] B.-Q. Li, C.-X. Zhao, S. Chen, J.-N. Liu, X. Chen, L. Song, Q. Zhang, Adv. Mater., 2019, 31, 1900592.
-
[20] Q. Qin, H. Jang, P. Li, B. Yuan, X. Liu, J. Cho, Adv. Energy Mater., 2019, 9, 1803312.
-
[21] J. Chang, Y. Xiao, M. Xiao, J. Ge, C. Liu, W. Xing, ACS Catal., 2015, 5, 6874-6878.
-
[22] S. She, Y. Zhu, Y. Chen, Q. Lu, W. Zhou, Z. Shao, Adv. Energy Mater., 2019, 9, 1900429.
-
[23] D. Chen, M. Qiao, Y.-R. Lu, L. Hao, D. Liu, C.-L. Dong, Y. Li, S. Wang, Angew. Chem. Int. Ed., 2018, 57, 8691-8696.
-
[24] L. Lv, Z. Yang, K. Chen, C. Wang, Y. Xiong, Adv. Energy Mater., 2019, 9, 1803358.
-
[25] D. Zhou, S. Wang, Y. Jia, X. Xiong, H. Yang, S. Liu, J. Tang, J. Zhang, D. Liu, L. Zheng, Y. Kuang, X. Sun, B. Liu, Angew. Chem. Int. Ed., 2019, 58, 736-740.
-
[26] T. Wang, G. Nam, Y. Jin, X. Wang, P. Ren, M.G. Kim, J. Liang, X. Wen, H. Jang, J. Han, Y. Huang, Q. Li, J. Cho, Adv. Mater., 2018, 30, 1800757.
-
[27] S. Yin, W. Tu, Y. Sheng, Y. Du, M. Kraft, A. Borgna, R. Xu, Adv. Mater., 2018, 30, 1705106.
-
[28] J. Zhang, J. Liu, L. Xi, Y. Yu, N. Chen, S. Sun, W. Wang, K. M. Lange, B. Zhang, J. Am. Chem. Soc., 2018, 140, 3876-3879.
-
[29] J. Li, W. Huang, M. Wang, S. Xi, J. Meng, K. Zhao, J. Jin, W. Xu, Z. Wang, X. Liu, Q. Chen, L. Xu, X. Liao, Y. Jiang, K. A. Owusu, B. Jiang, C. Chen, D. Fan, L. Zhou, L. Mai, ACS Energy Lett., 2019, 4, 285-292.
-
[30] X. Zhao, B. Pattengale, D. Fan, Z. Zou, Y. Zhao, J. Du, J. Huang, C. Xu, ACS Energy Lett., 2018, 3, 2520-2526.
-
[31] X.-L. Wang, L.-Z. Dong, M. Qiao, Y.-J. Tang, J. Liu, Y. Li, S.-L. Li, J.-X. Su, Y.-Q. Lan, Angew. Chem. Int. Ed., 2018, 57, 9660-9664.
-
[32] W. Zhou, D.-D. Huang, Y.-P. Wu, J. Zhao, T. Wu, J. Zhang, D.-S. Li, C. Sun, P. Feng, X. Bu, Angew. Chem. Int. Ed., 2019, 58, 4227-4231.
-
[33] W. Cheng, X. Zhao, H. Su, F. Tang, W. Che, H. Zhang, Q. Liu, Nat. Energy, 2019, 4, 115-122.
-
[34] J. Li, W. Huang, M. Wang, S. Xi, J. Meng, K. Zhao, J. Jin, W. Xu, Z. Wang, X. Liu, Q. Chen, L. Xu, X. Liao, Y. Jiang, K.A. Owusu, B. Jiang, C. Chen, D. Fan, L. Zhou, L. Mai, ACS Energy Lett., 2019, 4, 285-292.
-
[35] F. L. Li, Q. Shao, X. Huang, J. P. Lang, Angew. Chem. Int. Ed., 2018, 57, 1888-1892.
-
[36] X.-F. Lu, P.-Q. Liao, J.-W. Wang, J.-X. Wu, X.-W. Chen, C.-T. He, J.-P. Zhang, G.-R. Li, X.-M. Chen, J. Am. Chem. Soc., 2016, 138, 8336-8339.
-
[37] S. Zhao, Y. Wang, J. Dong, C.-T. He, H. Yin, P. An, K. Zhao, X. Zhang, C. Gao, L. Zhang, J. Lv, J. Wang, J. Zhang, A. M. Khattak, N. A. Khan, Z. Wei, J. Zhang, S. Liu, H. Zhao, Z. Tang, Nat. Energy, 2016, 1, 16184.
-
[38] M. Jiang, J. Chen, Y. Li, Chin. J. Catal., 2018, 39, 1017-1026.
-
[39] J. Lin, B. Ma, M. Chen, Y. Ding, Chin. J. Catal., 2018, 39, 463-471.
-
[40] N. Wang, H. Zheng, W. Zhang, R. Cao, Chin. J. Catal., 2018, 39, 228-244.
-
[41] X. Wang, Z.-F. Cai, D. Wang, L.-J. Wan, J. Am. Chem. Soc., 2019, 141, 7665-7669.
-
[42] J. Huang, Y. Sun, Y. Zhang, G. Zou, C. Yan, S. Cong, T. Lei, X. Dai, J. Guo, R. Lu, Y. Li, J. Xiong, Adv. Mater., 2018, 30, 1705045.
-
[43] P. Feng, X. Cheng, J. Li, X. Luo, ChemistrySelect, 2018, 3, 760-764.
-
[44] R. Guo, X. Lai, J. Huang, X. Du, Y. Yan, Y. Sun, G. Zou, J. Xiong, ChemElectroChem, 2018, 5, 3822-3834.
-
[45] M. W. Kanan, D. G. Nocera, Science, 2008, 321, 1072-1075.
-
[46] M. Risch, V. Khare, I. Zaharieva, L. Gerencser, P. Chernev, H. Dau, J. Am. Chem. Soc., 2009, 131, 6936-6937.
-
[47] M. W. Kanan, J. Yano, Y. Surendranath, M. Dincă, V. K. Yachandra, D. G. Nocera, J. Am. Chem. Soc., 2010, 132, 13692-13701.
-
[48] H. Kim, J. Park, I. Park, K. Jin, S. E. Jerng, S. H. Kim, K. T. Nam, K. Kang, Nat Commun, 2015, 6, 8253-8263.
-
[49] J. Park, H. Kim, K. Jin, B. J. Lee, Y.-S. Park, H. Kim, I. Park, K. D. Yang, H.-Y. Jeong, J. Kim, K. T. Hong, H. W. Jang, K. Kang, K. T. Nam, J. Am. Chem. Soc., 2014, 136, 4201-4211.
-
[50] Z. Zhao, H. Wu, H. He, X. Xu, Y. Jin, Adv. Funct. Mater., 2014, 24, 4698-4705.
-
[51] K. Jin, J. Park, J. Lee, K. D. Yang, G. K. Pradhan, U. Sim, D. Jeong, H. L. Jang, S. Park, D. Kim, N.-E. Sung, S. H. Kim, S. Han, K. T. Nam, J. Am. Chem. Soc., 2014, 136, 7435-7443.
-
[52] C. P. Plaisance, R. A. van Santen, J. Am. Chem. Soc., 2015, 137, 14660-14672.
-
[53] T. Zhou, Y. Du, D. Wang, S. Yin, W. Tu, Z. Chen, A. Borgna, R. Xu, ACS Catal., 2017, 7, 6000-6007.
-
[54] R. Zhang, P. A. Russo, A. G. Buzanich, T. Jeon, N. Pinna, Adv. Funct. Mater., 2017, 27, 1703158.
-
[55] J. Saha, D. Roy Chowdhury, P. Jash, A. Paul, Chem. Eur. J, 2017, 23, 12519-12526.
-
[56] W.-X. Lu, B. Wang, W.-J. Chen, J.-L. Xie, Z.-Q. Huang, W. Jin, J.-L. Song, ACS Sustainable Chem. Eng., 2019, 7, 3083-3091.
-
[57] T. O. Salami, X. Fan, P. Y. Zavalij, S. R. J. Oliver, Dalton Trans, 2006, 1574-1578.
-
[58] T.-H. Zhou, F.-Y. Yi, P.-X. Li, J.-G. Mao, Inorg. Chem., 2010, 49, 905-915.
-
[59] Z. Liu, R. Ma, M. Osada, K. Takada, T. Sasaki, J. Am. Chem. Soc., 2005, 127, 13869-13874.
-
[60] K. M. Koczkur, S. Mourdikoudis, L. Polavarapu, S. E. Skrabalak, Dalton Trans., 2015, 44, 17883-17905.
-
[61] X. W. Lou, L. A. Archer, Adv. Mater., 2008, 20, 1853-1858.
-
[62] J. S. Chen, J. Liu, S. Z. Qiao, R. Xu, X. W. Lou, Chem. Commun., 2011, 47, 10443-10445.
-
[63] H. Shi, H. Liang, F. Ming, Z. Wang, Angew. Chem. Int. Ed, 2017, 56, 573-577.
-
[64] L. Zhan, S. Wang, L.-X. Ding, Z. Li, H. Wang, J. Mater. Chem. A, 2015, 3, 19711-19717.
-
[65] J. Wang, C. F. Tan, T. Zhu, G. W. Ho, Angew. Chem. Int. Ed., 2016, 55, 10326-10330.
-
-
扫一扫看文章
计量
- PDF下载量: 2
- 文章访问数: 520
- HTML全文浏览量: 21

下载: