选择性合成不同形貌的Sb2S3纳米结构应用于高性能的染料敏化太阳能电池

陈学 李雪敏 卫朋坤 马小勇 喻其林 刘璐

引用本文: 陈学,  李雪敏,  卫朋坤,  马小勇,  喻其林,  刘璐. 选择性合成不同形貌的Sb2S3纳米结构应用于高性能的染料敏化太阳能电池[J]. 催化学报, 2020, 41(3): 435-441. doi: S1872-2067(19)63493-5 shu
Citation:  Xue Chen,  Xuemin Li,  Pengkun Wei,  Xiaoyong Ma,  Qinlin Yu,  Lu Liu. Selective synthesis of Sb2S3 nanostructures with different morphologies for high performance in dye-sensitized solar cells[J]. Chinese Journal of Catalysis, 2020, 41(3): 435-441. doi: S1872-2067(19)63493-5 shu

选择性合成不同形貌的Sb2S3纳米结构应用于高性能的染料敏化太阳能电池

  • 基金项目:

    This work was funded by the Tianjin science and technology support key projects (18YFZCSF00500), and the National Science Fund for Distinguished Young Scholars (21425729) from the National Natural Science Foundation of China.

摘要: 近几十年来,随着全球变暖和能源危机的日益严重,对取之不尽、用之不竭的清洁能源技术的需求越来越迫切.1991年Gratzel首次报道了染料敏化太阳能电池(DSSCs),它以低廉的价格、优异的理论功率转换效率(PCE)、环保、多色透明等优点而引起了研究者的关注.Sb2S3因其1.5-2.2eV的间隙宽度被认为是最有前途的对电极材料之一.此外,Sb2S3是地球中含量丰富的无毒锑矿物的主要成分,还被广泛应用于太阳能转换材料、催化剂、光导探测器等领域.众所周知,石墨烯具有巨大的比表面积、显著的载流子迁移率和优异的热/化学稳定性,这使得提高电子转移效率和电催化活性成为可能.
首先,采用改进的Hummers方法制备了氧化石墨烯纳米片然后采用水热法通过改变Sb源以及实验pH值,合成了Sb2S3和Sb2S3@RGO样品.对样品进行X射线粉末衍射(XRD)、扫描电子显微镜镜(SEM)、投射电子显微镜(TEM)以及比表面积表征.结果表明,在Sb源不变的情况下,Sb2S3样品的形貌随pH值的变化而变化.以三乙酸锑为Sb源,在pH=3时,Sb2S3的形貌类似于一个完整的纳米棒结构在pH值为6时,样品为不规则球体当pH值为8时,纳米片结构开始出现但当pH=10时,纳米片结构并不均匀.根据XRD分析,只有当pH值为3时,样品的衍射峰才与标准卡(JCPDS 42-1393)的衍射峰一致.当以氯化锑作为锑源,样品的形貌由不规则的杆状(pH=3)转变为纳米球(pH=6),然后出现纳米片结构(pH=8).不同的是,当pH值为10时,纳米薄片形成均一的花状结构.XRD结果表明,除pH值为3外,样品的衍射峰与标准卡(JCPDS 42-1393)的值吻合较好.结果表明,合成条件所需的Sb源和碱性环境是合成具有均匀花状结构的纳米片状Sb2S3所必不可少的.测得Sb2S3的比表面积约为41.72m2g-1,平均孔径为31.08 nm,Sb2S3@RGO的分别为44.53m2g-1和22.65nm.Sb2S3和Sb2S3@RGO复合材料均具有介孔结构,为内部电催化剂提供了广阔的通道,从而提高了对电极的催化能力,促进了电化学反应.
将Sb2S3纳米花球和Sb2S3@RGO纳米薄片作为染料敏化太阳能电池的对电极进行了测试,由于石墨烯的引入,后者比前者具有更好的电催化性能.电化学实验结果表明,与Sb2S3,RGO,Pt作为对电极相比,制备的Sb2S3@RGO纳米薄片具有更好的催化活性、电荷转移能力和电化学稳定性,Sb2S3@RGO的功率转换效率达到8.17%,优于标准Pt对电极(7.75%).

English

    1. [1] L. Hu, X. Feng, L. Wei, K. Zhang, J. Dai, Y. Wu, Q. Chen, Nanoscale, 2015, 7, 10925-10930.

    2. [2] X. Yuan, B. Zhou, X. Zhang, Y. Li, L. Liu, Electrochim. Acta, 2018, 283, 1163-1169.

    3. [3] M. Gratzel, J. Photochem. Photobiol. A, 2004, 168, 235-235.

    4. [4] Y. Hou, D. Wang, X. H. Yang, W. Q. Fang, B. Zhang, H. F. Wang, G. Z. Lu, P. Hu, H. J. Zhao, H. G. Yang, Nat. Communi., 2013, 4, 1583.

    5. [5] S. Yun, A. Hagfeldt, T. Ma, ChemCatChem, 2014, 6, 1584-1588.

    6. [6] F. Bella, S. Galliano, M. Falco, G. Viscardi, C. Barolo, M. Gratzel, C. Gerbaldi, Chem. Sci., 2016, 7, 4880-4890.

    7. [7] G. Calogero, P. Calandra, A. Irrera, A. Sinopoli, I. Citro, G. Di Marco, Energy Environ. Sci., 2011, 4, 1838-1844.

    8. [8] J. Briscoe, S. Dunn, Adv. Mater., 2016, 28, 3802-3813.

    9. [9] D. Hogberg, B. Soberats, R. Yatagai, S. Uchida, M. Yoshio, L. Kloo, H. Segawa, T. Kato, Chem. Mater., 2016, 28, 6493-6500.

    10. [10] H. Wang, W. Wei, Y. H. Hu, J. Mater. Chem. A, 2013, 1, 6622-6628.

    11. [11] D. J. Kim, J. K. Koh, C. S. Lee, J. H. Kim, Adv. Energy Mater., 2014, 4, 1400414.

    12. [12] Y. Duan, Q. Tang, J. Liu, B. He, L. Yu, Angew. Chem. Int. Ed., 2014, 53, 14569-14574.

    13. [13] X. Zhang, M. Zhen, J. Bai, S. Jin, L. Liu, ACS Appl. Mater. Interfaces, 2016, 8, 17187-17193.

    14. [14] F.-X. Ma, H. Hu, H. B. Wu, C.-Y. Xu, Z. Xu, L. Zhen, X. W. Lou, Adv. Mater., 2015, 27, 4097-4101.

    15. [15] W. Tao, J. Chang, D. Wu, Z. Gao, X. Duan, F. Xu, K. Jiang, Mater. Res. Bull., 2013, 48, 538-543.

    16. [16] Y. C. Choi, D. U. Lee, J. H. Noh, E. K. Kim, S. I. Seok, Adv. Funct. Ma-ter., 2014, 24, 3587-3592.

    17. [17] P. Sun, Z. Ming, C. Ai, Z. Wu, L. Shuang, X. Zhang, H. Niu, Y. Sun, X. Sun, J. Power Sources, 2016, 319, 219-226.

    18. [18] J. H. Heo, S. H. Im, H.-J. Kim, P. P. Boix, S. J. Lee, S. I. Seok, I. Mo-ra-Sero, J. Bisquert, J. Phys. Chem. C, 2012, 116, 20717-20721.

    19. [19] J. Ota, S. K. Srivastava, Cryst. Growth Des., 2007, 7, 343-347.

    20. [20] C. E. Patrick, F. Giustino, Adv. Funct. Mater., 2011, 21, 4663-4667.

    21. [21] D. Lee, Y. Rho, F. I. Allen, A. M. Minor, S. H. Ko, C. P. Grigoropoulos, Nanoscale, 2013, 5, 11147-11152.

    22. [22] J. Tang, J. Li, Y. Cheng, P. Huang, Q. Deng, Vacuum, 2015, 120, 96-100.

    23. [23] B. N. Reddy, M. Deepa, A. G. Joshi, Phys. Chem. Chem. Phys., 2014, 16, 2062-2071.

    24. [24] X. Du, I. Skachko, A. Barker, E. Y. Andrei, Nat. Nanotechnol., 2008, 3, 491-495.

    25. [25] W. Wei, K. Sun, Y. H. Hu, J. Mater. Chem. A, 2014, 2, 16842-16846.

    26. [26] S. Unarunotai, Y. Murata, C. E. Chialvo, N. Mason, I. Petrov, R. G. Nuzzo, J. S. Moore, J. A. Rogers, Adv. Mater., 2010, 22, 1072-1077.

    27. [27] W. Hui, H. H. Yun, Energy Environ. Sci., 2012, 5, 8182-8188.

    28. [28] H. Wang, K. Sun, F. Tao, D. J. Stacchiola, Y. H. Hu, Angew. Chem. Int. Ed., 2013, 52, 9210-9214.

    29. [29] N. Yang, J. Zhai, D. Wang, Y. Chen, L. Jiang, ACS Nano, 2010, 4, 887-894.

    30. [30] J. D. Roy-Mayhew, D. J. Bozym, C. Punckt, I. A. Aksay, ACS Nano, 2010, 4, 6203-6211.

    31. [31] X. Zhang, J. Bai, B. Yang, G. Li, L. Liu, RSC Adv., 2016, 6, 58925-58932.

    32. [32] S. Park, J. An, R. D. Piner, I. Jung, D. Yang, A. Velamakanni, S. T. Nguyen, R. S. Ruoff, Chem. Mater., 2008, 20, 6592-6594.

    33. [33] M. Sookhakian, Y. M. Amin, R. Zakaria, W. J. Basirun, M. R. Mahmoudian, B. Nasiri-Tabrizi, S. Baradaran, M. Azarang, J. Alloys Compd., 2015, 632, 201-207.

    34. [34] Y. Wang, M. Wu, X. Lin, A. Hagfeldt, T. Ma, Eur. J. Inorg. Chem., 2012, 3557-3561.

    35. [35] X. Zhang, J. Bai, M. Zhen, L. Liu, RSC Adv., 2016, 6, 89614-89620.

    36. [36] J. Zheng, W. Zhou, Y. Ma, W. Cao, C. Wang, L. Guo, Chem. Commun., 2015, 51, 12863-12866.

    37. [37] M. Wu, X. Lin, Y. Wang, T. Ma, Journal of Materials Chemistry A, 2015, 3, 19638-19656.

    38. [38] H. Chen, Y. Xie, H. Cui, W. Zhao, X. Zhu, Y. Wang, X. Lu, F. Huang, Chemical Commun., 2014, 50, 4475-4477.

    39. [39] C. Zhu, Y. Huang, F. Xu, P. Gao, B. Ge, J. Chen, H. Zeng, E. Sutter, P. Sutter, L. Sun, Small, 2017, 13,1700565.

    40. [40] B. Lee, D.-K. Hwang, P. Guo, S.-T. Ho, D. B. Buchholtz, C.-Y. Wang, R. P. H. Chang, J. Phys. Chem. B, 2010, 114, 14582-14591.

    41. [41] J. Huo, J. Wu, M. Zheng, Y. Tu, Z. Lan, RSC Adv., 2015, 5, 83029-83035.

    42. [42] J. Zhang, W. Peng, Z. Chen, H. Chen, L. Han, J. Phys. Chem. C, 2012, 116, 19182-19190.

  • 加载中
计量
  • PDF下载量:  5
  • 文章访问数:  1097
  • HTML全文浏览量:  39
文章相关
  • 收稿日期:  2019-06-28
  • 修回日期:  2019-08-23
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章