Citation: Xue Chen, Xuemin Li, Pengkun Wei, Xiaoyong Ma, Qinlin Yu, Lu Liu. Selective synthesis of Sb2S3 nanostructures with different morphologies for high performance in dye-sensitized solar cells[J]. Chinese Journal of Catalysis, 2020, 41(3): 435-441. doi: S1872-2067(19)63493-5
				
			
			选择性合成不同形貌的Sb2S3纳米结构应用于高性能的染料敏化太阳能电池
首先,采用改进的Hummers方法制备了氧化石墨烯纳米片然后采用水热法通过改变Sb源以及实验pH值,合成了Sb2S3和Sb2S3@RGO样品.对样品进行X射线粉末衍射(XRD)、扫描电子显微镜镜(SEM)、投射电子显微镜(TEM)以及比表面积表征.结果表明,在Sb源不变的情况下,Sb2S3样品的形貌随pH值的变化而变化.以三乙酸锑为Sb源,在pH=3时,Sb2S3的形貌类似于一个完整的纳米棒结构在pH值为6时,样品为不规则球体当pH值为8时,纳米片结构开始出现但当pH=10时,纳米片结构并不均匀.根据XRD分析,只有当pH值为3时,样品的衍射峰才与标准卡(JCPDS 42-1393)的衍射峰一致.当以氯化锑作为锑源,样品的形貌由不规则的杆状(pH=3)转变为纳米球(pH=6),然后出现纳米片结构(pH=8).不同的是,当pH值为10时,纳米薄片形成均一的花状结构.XRD结果表明,除pH值为3外,样品的衍射峰与标准卡(JCPDS 42-1393)的值吻合较好.结果表明,合成条件所需的Sb源和碱性环境是合成具有均匀花状结构的纳米片状Sb2S3所必不可少的.测得Sb2S3的比表面积约为41.72m2g-1,平均孔径为31.08 nm,Sb2S3@RGO的分别为44.53m2g-1和22.65nm.Sb2S3和Sb2S3@RGO复合材料均具有介孔结构,为内部电催化剂提供了广阔的通道,从而提高了对电极的催化能力,促进了电化学反应.
将Sb2S3纳米花球和Sb2S3@RGO纳米薄片作为染料敏化太阳能电池的对电极进行了测试,由于石墨烯的引入,后者比前者具有更好的电催化性能.电化学实验结果表明,与Sb2S3,RGO,Pt作为对电极相比,制备的Sb2S3@RGO纳米薄片具有更好的催化活性、电荷转移能力和电化学稳定性,Sb2S3@RGO的功率转换效率达到8.17%,优于标准Pt对电极(7.75%).
English
Selective synthesis of Sb2S3 nanostructures with different morphologies for high performance in dye-sensitized solar cells
- 
								Key words:
								
 - Sb2S3
 - / Reduced graphene oxide
 - / Counter electrode
 - / Dye-sensitized cells
 - / Power conversion efficiency
 
- 
							
- 
			
[1] L. Hu, X. Feng, L. Wei, K. Zhang, J. Dai, Y. Wu, Q. Chen, Nanoscale, 2015, 7, 10925-10930.
 - 
			
[2] X. Yuan, B. Zhou, X. Zhang, Y. Li, L. Liu, Electrochim. Acta, 2018, 283, 1163-1169.
 - 
			
[3] M. Gratzel, J. Photochem. Photobiol. A, 2004, 168, 235-235.
 - 
			
[4] Y. Hou, D. Wang, X. H. Yang, W. Q. Fang, B. Zhang, H. F. Wang, G. Z. Lu, P. Hu, H. J. Zhao, H. G. Yang, Nat. Communi., 2013, 4, 1583.
 - 
			
[5] S. Yun, A. Hagfeldt, T. Ma, ChemCatChem, 2014, 6, 1584-1588.
 - 
			
[6] F. Bella, S. Galliano, M. Falco, G. Viscardi, C. Barolo, M. Gratzel, C. Gerbaldi, Chem. Sci., 2016, 7, 4880-4890.
 - 
			
[7] G. Calogero, P. Calandra, A. Irrera, A. Sinopoli, I. Citro, G. Di Marco, Energy Environ. Sci., 2011, 4, 1838-1844.
 - 
			
[8] J. Briscoe, S. Dunn, Adv. Mater., 2016, 28, 3802-3813.
 - 
			
[9] D. Hogberg, B. Soberats, R. Yatagai, S. Uchida, M. Yoshio, L. Kloo, H. Segawa, T. Kato, Chem. Mater., 2016, 28, 6493-6500.
 - 
			
[10] H. Wang, W. Wei, Y. H. Hu, J. Mater. Chem. A, 2013, 1, 6622-6628.
 - 
			
[11] D. J. Kim, J. K. Koh, C. S. Lee, J. H. Kim, Adv. Energy Mater., 2014, 4, 1400414.
 - 
			
[12] Y. Duan, Q. Tang, J. Liu, B. He, L. Yu, Angew. Chem. Int. Ed., 2014, 53, 14569-14574.
 - 
			
[13] X. Zhang, M. Zhen, J. Bai, S. Jin, L. Liu, ACS Appl. Mater. Interfaces, 2016, 8, 17187-17193.
 - 
			
[14] F.-X. Ma, H. Hu, H. B. Wu, C.-Y. Xu, Z. Xu, L. Zhen, X. W. Lou, Adv. Mater., 2015, 27, 4097-4101.
 - 
			
[15] W. Tao, J. Chang, D. Wu, Z. Gao, X. Duan, F. Xu, K. Jiang, Mater. Res. Bull., 2013, 48, 538-543.
 - 
			
[16] Y. C. Choi, D. U. Lee, J. H. Noh, E. K. Kim, S. I. Seok, Adv. Funct. Ma-ter., 2014, 24, 3587-3592.
 - 
			
[17] P. Sun, Z. Ming, C. Ai, Z. Wu, L. Shuang, X. Zhang, H. Niu, Y. Sun, X. Sun, J. Power Sources, 2016, 319, 219-226.
 - 
			
[18] J. H. Heo, S. H. Im, H.-J. Kim, P. P. Boix, S. J. Lee, S. I. Seok, I. Mo-ra-Sero, J. Bisquert, J. Phys. Chem. C, 2012, 116, 20717-20721.
 - 
			
[19] J. Ota, S. K. Srivastava, Cryst. Growth Des., 2007, 7, 343-347.
 - 
			
[20] C. E. Patrick, F. Giustino, Adv. Funct. Mater., 2011, 21, 4663-4667.
 - 
			
[21] D. Lee, Y. Rho, F. I. Allen, A. M. Minor, S. H. Ko, C. P. Grigoropoulos, Nanoscale, 2013, 5, 11147-11152.
 - 
			
[22] J. Tang, J. Li, Y. Cheng, P. Huang, Q. Deng, Vacuum, 2015, 120, 96-100.
 - 
			
[23] B. N. Reddy, M. Deepa, A. G. Joshi, Phys. Chem. Chem. Phys., 2014, 16, 2062-2071.
 - 
			
[24] X. Du, I. Skachko, A. Barker, E. Y. Andrei, Nat. Nanotechnol., 2008, 3, 491-495.
 - 
			
[25] W. Wei, K. Sun, Y. H. Hu, J. Mater. Chem. A, 2014, 2, 16842-16846.
 - 
			
[26] S. Unarunotai, Y. Murata, C. E. Chialvo, N. Mason, I. Petrov, R. G. Nuzzo, J. S. Moore, J. A. Rogers, Adv. Mater., 2010, 22, 1072-1077.
 - 
			
[27] W. Hui, H. H. Yun, Energy Environ. Sci., 2012, 5, 8182-8188.
 - 
			
[28] H. Wang, K. Sun, F. Tao, D. J. Stacchiola, Y. H. Hu, Angew. Chem. Int. Ed., 2013, 52, 9210-9214.
 - 
			
[29] N. Yang, J. Zhai, D. Wang, Y. Chen, L. Jiang, ACS Nano, 2010, 4, 887-894.
 - 
			
[30] J. D. Roy-Mayhew, D. J. Bozym, C. Punckt, I. A. Aksay, ACS Nano, 2010, 4, 6203-6211.
 - 
			
[31] X. Zhang, J. Bai, B. Yang, G. Li, L. Liu, RSC Adv., 2016, 6, 58925-58932.
 - 
			
[32] S. Park, J. An, R. D. Piner, I. Jung, D. Yang, A. Velamakanni, S. T. Nguyen, R. S. Ruoff, Chem. Mater., 2008, 20, 6592-6594.
 - 
			
[33] M. Sookhakian, Y. M. Amin, R. Zakaria, W. J. Basirun, M. R. Mahmoudian, B. Nasiri-Tabrizi, S. Baradaran, M. Azarang, J. Alloys Compd., 2015, 632, 201-207.
 - 
			
[34] Y. Wang, M. Wu, X. Lin, A. Hagfeldt, T. Ma, Eur. J. Inorg. Chem., 2012, 3557-3561.
 - 
			
[35] X. Zhang, J. Bai, M. Zhen, L. Liu, RSC Adv., 2016, 6, 89614-89620.
 - 
			
[36] J. Zheng, W. Zhou, Y. Ma, W. Cao, C. Wang, L. Guo, Chem. Commun., 2015, 51, 12863-12866.
 - 
			
[37] M. Wu, X. Lin, Y. Wang, T. Ma, Journal of Materials Chemistry A, 2015, 3, 19638-19656.
 - 
			
[38] H. Chen, Y. Xie, H. Cui, W. Zhao, X. Zhu, Y. Wang, X. Lu, F. Huang, Chemical Commun., 2014, 50, 4475-4477.
 - 
			
[39] C. Zhu, Y. Huang, F. Xu, P. Gao, B. Ge, J. Chen, H. Zeng, E. Sutter, P. Sutter, L. Sun, Small, 2017, 13,1700565.
 - 
			
[40] B. Lee, D.-K. Hwang, P. Guo, S.-T. Ho, D. B. Buchholtz, C.-Y. Wang, R. P. H. Chang, J. Phys. Chem. B, 2010, 114, 14582-14591.
 - 
			
[41] J. Huo, J. Wu, M. Zheng, Y. Tu, Z. Lan, RSC Adv., 2015, 5, 83029-83035.
 - 
			
[42] J. Zhang, W. Peng, Z. Chen, H. Chen, L. Han, J. Phys. Chem. C, 2012, 116, 19182-19190.
 
 - 
			
 - 
							
							
							
							
							
						 
						扫一扫看文章
					计量
- PDF下载量: 5
 - 文章访问数: 1097
 - HTML全文浏览量: 39
 

下载: