新型间接Z字结型g-C3N4/Bi2MoO6/Bi空心微球等离子共振增强光吸收和光催化性能

李宁 高航 王鑫 赵苏君 吕达 杨国庆 高雪云 樊海宽 高旸钦 戈磊

引用本文: 李宁,  高航,  王鑫,  赵苏君,  吕达,  杨国庆,  高雪云,  樊海宽,  高旸钦,  戈磊. 新型间接Z字结型g-C3N4/Bi2MoO6/Bi空心微球等离子共振增强光吸收和光催化性能[J]. 催化学报, 2020, 41(3): 426-434. doi: S1872-2067(19)63478-9 shu
Citation:  Ning Li,  Hang Gao,  Xin Wang,  Sujun Zhao,  Da Lv,  Guoqing Yang,  Xueyun Gao,  Haikuan Fan,  Yangqin Gao,  Lei Ge. Novel indirect Z-scheme g-C3N4/Bi2MoO6/Bi hollow microsphere heterojunctions with SPR-promoted visible absorption and highly enhanced photocatalytic performance[J]. Chinese Journal of Catalysis, 2020, 41(3): 426-434. doi: S1872-2067(19)63478-9 shu

新型间接Z字结型g-C3N4/Bi2MoO6/Bi空心微球等离子共振增强光吸收和光催化性能

  • 基金项目:

    国家自然科学基金(51802351).

摘要: 半导体光催化技术是目前最有前景的绿色化学技术,可通过利用太阳光降解污染物或制氢.作为有潜力的半导体催化剂,钼酸铋具有合适的带隙(2.58eV).但是,由于低的量子产量,钼酸铋的光催化性能并不理想.为了提高钼酸铋的光催化性能,研究者多考虑采取构造异质结的方式.石墨相氮化碳(g-C3N4)能带位置合适,与多种光催化半导体能带匹配,是构造异质结的常用选择.因此,本文选用g-C3N4与钼酸铋复合,构造异质结结构.为了进一步提高光催化性能,多采用负载贵金属(Pt,Au和Pd)作为助催化剂,利用贵金属特有的等离子共振效应,增加光吸收,促进载流子分离,但贵金属价格昂贵.Bi金属单质价格便宜,具备等效的等离子共振效应,是理想的贵金属替代物.钼酸铋可以采取原位还原的方式还原出Bi单质,构造更紧密的界面结构,更有利于载流子传输.Bi的等离子共振效应可以有效提高材料的光吸收能力和光生载流子分离率.
本文采用溶剂热和原位还原方法成功合成了一种新型三元异质结结构g-C3N4/Bi2MoO6/Bi(CN/BMO/Bi)空心微球.结果显示,三元异质结结构的最佳配比为0.4CN/BMO/9Bi,该样品表现出最好的光催化降解罗丹明B效率,是纯钼酸铋的9倍.通过计算DRS和XPS的价带数据,0.4CN/BMO/9Bi是一种Z字型异质结.牺牲试剂实验也提供了Z字型异质结的有力证据,测试显示超氧自由基·O2-(在-0.33eV)是光催化降解的主要基团.但是,钼酸铋的导带位置低于-0.33eV,g-C3N4的导带高于-0.33eV,因此g-C3N4的导带是唯一的反应位点,从而证明了光生载流子的转移是通过Z字型异质结结构实现的.TEM图显示金属Bi分散在钼酸铋表面.DRS和PL图分析表明金属Bi增加了材料的光吸收能力,同时扮演了中间介质的角色,促进钼酸铋导带的电子和g-C3N4价带的空穴快速复合.因此,g-C3N4/Bi2MoO6/Bi的优异光催化性能主要归功于Z字型异质结和Bi金属的等离子共振吸收效应,提高了材料的光吸收能力和光生载流子分离率.

English

    1. [1] J. Bai, W. Lv, H. Xu, G. Chen, Z. Ni, Z. Wang, H. Qin, Z. Zheng, X. Li, J. Nano Sci. Nano Technol., 2019, 19, 5736-5742.

    2. [2] Y. H. Ng, A. Iwase, A. Kudo, R. Amal, J. Phys. Chem. Lett., 2010, 1, 2607-2612.

    3. [3] H. B. Fu, C. S. Pan, W. Q. Yao, Y. F. Zhu, J. Phys. Chem. B, 2005, 109, 22432-22439.

    4. [4] H. Li, J. Liu, W. Hou, N. Du, R. Zhang, X. Tao, Appl. Catal. B, 2014, 160-161, 89-97.

    5. [5] G. Tian, Y. Chen, W. Zhou, K. Pan, Y. Dong, C. Tian, H. Fu, J. Mater. Chem., 2011, 21, 887-892.

    6. [6] J. Di, J. Xia, M. Ji, H. Li, H. Xu, H. Li, R. Chen, Nanoscale, 2015, 7, 11433-11443.

    7. [7] J. Qin, J. Huo, P. Zhang, J. Zeng, T. Wang, H. Zeng, Nanoscale, 2016, 8, 2249-2259.

    8. [8] N. Xiao, S. Li, S. Liu, B. Xu, Y. Li, Y. Gao, L. Ge, G. Lu, Chin. J. Catal., 2019, 40, 352-361.

    9. [9] Z. Xie, Y. Feng, F. Wang, D. Chen, Q. Zhang, Y. Zeng, W. Lv, G. Liu, Appl. Catal. B, 2018, 229, 96-104.

    10. [10] F. Opoku, K. K. Govender, C. G. C. E. van Sittert, P. P. Govendera, Appl. Surf. Sci., 2018, 427, 487-498.

    11. [11] D. Ma, J. Wu, M. Gao, Y. Xin, T. Ma, Y. Sun, Chem. Eng. J., 2016, 290, 136-146.

    12. [12] X. Li, J. Xiong, Y. Xu, Z. Feng, J. Huang, Chin. J. Catal., 2019, 40, 424-433.

    13. [13] L. Hu, J. Yan, C. Wang, B. Chai, J. Li, Chin. J. Catal., 2019, 40, 458-469.

    14. [14] J. Wen, J. Xie, X. Chen, X. Li, Appl. Surf. Sci., 2017, 391, 72-123.

    15. [15] J. Wang, L. Tang, G. Zeng, Y. Liu, Y. Zhou, Y. Deng, J. Wang, B. Peng, ACS Sustain. Chem. Eng., 2017, 5, 1062-1072.

    16. [16] J. Zeng, T. Song, M. Lv, T. Wang, J. Qin, H. Zeng, RSC Adv., 2016, 6, 54964-54975.

    17. [17] H. Yang, L.-Q. He, Y.-W. Hu, X. Lu, G.-R. Li, B. Liu, B. Ren, Y. Tong, P.-P. Fang, Angew. Chem. Int. Ed., 2015, 54, 11462-11466.

    18. [18] Z. Zhang, Z. Wang, S.-W. Cao, C. Xue, J. Phys. Chem. C, 2013, 117, 25939-25947.

    19. [19] Y. Huang, S. Kang, Y. Yang, H. Qin, Z. Ni, S. Yang, X. Li, Appl. Catal. B, 2016, 196, 89-99.

    20. [20] J. Zhao, J. Yan, H. Jia, S. Zhong, X. Zhang, L. Xu, J. Mol. Catal. A, 2016, 424, 162-170.

    21. [21] L. Cai, J. Gong, J. Liu, H. Zhang, W. Song, L. Ji, Materials, 2018, 11, 267/1-267/11.

    22. [22] Y. Deng, L. Tang, C. Feng, G. Zeng, Z. Chen, J. Wang, H. Feng, B. Peng, Y. Liu, Y. Zhou, Appl. Catal. B, 2018, 235, 225-237.

    23. [23] Z. Wang, C. Jiang, R. Huang, H. Peng, X. Tang, J. Phys. Chem. C, 2014, 118, 1155-1160.

    24. [24] Y. Zhang, M. Wang, G. Yang, Y. Qi, T. Chai, S. Li, T. Zhu, Sep. Purif. Technol., 2018, 202, 335-344.

    25. [25] L. Ge, C. Han, J. Liu, Appl. Catal. B, 2011, 108-109, 100-107.

    26. [26] Q. Lin, L. Li, S. Liang, M. Liu, J. Bi, L. Wu, Appl. Catal. B, 2015, 163, 135-142.

    27. [27] J. Wang, L. Tang, G. Zeng, Y. Deng, Y. Liu, L. Wang, Y. Zhou, Z. Guo, J. Wang, C. Zhang, Appl. Catal. B, 2017, 209, 285-294.

    28. [28] T. Yan, Q. Yan, X. Wang, H. Liu, M. Li, S. Lu, W. Xu, M. Sun, Dalton Trans., 2015, 44, 1601-1611.

    29. [29] D. Wang, H. Shen, L. Guo, C. Wang, F. Fu, Y. Liang, Appl. Surf. Sci., 2018, 436, 536-547.

    30. [30] Z. Jia, F. Lyu, L. C. Zhang, S. Zeng, S. X. Liang, Y. Y. Li, J. Lu, Sci. Rep., 2019, 9, 7636/1-7636/13.

    31. [31] D. Chen, J. Fang, S. Lu, G. Zhou, W. Feng, F. Yang, Y. Chen, Z. Fang, Appl. Surf. Sci., 2017, 426, 427-436.

    32. [32] J. Li, W. Zhang, M. Ran, Y. Sun, H. Huang, F. Dong, Appl. Catal. B, 2019, 243, 313-321.

    33. [33] F. Dong, Q. Li, Y. Sun, W.-K. Ho, ACS Catal., 2014, 4, 4341-4350.

    34. [34] H. Wang, W. Zhang, X. Li, J. Li, W. Cen, Q. Li, F. Dong, Appl. Catal. B, 2018, 225, 218-227.

    35. [35] M. Wang, J. Han, C. Lv, Y. Zhang, M. You, T. Liu, S. Li, T. Zhu, J. Alloys Compd., 2018, 753, 465-474.

    36. [36] Z. Zhao, W. Zhang, Y. Sun, J. Yu, Y. Zhang, H. Wang, F. Dong, Z. Wu, J. Phys. Chem. C, 2016, 120, 11889-11898.

    37. [37] X. Ding, W. Ho, J. Shang, L. Zhang, Appl. Catal. B, 2016, 182, 316-325.

    38. [38] Y. Sun, Z. Zhao, F. Dong, W. Zhang, Phys. Chem. Chem. Phys., 2015, 17, 10383-10390.

    39. [39] M. Wang, P. Guo, Y. Zhang, C. Lv, T. Liu, T. Chai, Y. Xie, Y. Wang, T. Zhu, J. Hazard Mater., 2018, 349, 224-233.

    40. [40] J. Li, Y. Yin, E. Liu, Y. Ma, J. Wan, J. Fan, X. Hu, J. Hazard. Mater., 2017, 321, 183-192.

    41. [41] C. Sun, Q. Xu, Y. Xie, Y. Ling, J. Jiao, H. Zhu, J. Zhao, X. Liu, B. Hu, D. Zhou, J. Alloys Compd., 2017, 723, 333-344.

    42. [42] H. Li, W. Hou, X. Tao, N. Du, Appl. Catal. B, 2015, 172-173, 27-36.

    43. [43] Y. Feng, X. Yan, C. Liu, Y. Hong, L. Zhu, M. Zhou, W. Shi, Appl. Surf. Sci., 2015, 353, 87-94.

    44. [44] T. Hu, Y. Yang, K. Dai, J. Zhang, C. Liang, Appl. Surf. Sci., 2018, 456, 473-481.

    45. [45] H. Li, T. Hu, R. Zhang, J. Liu, W. Hou, Appl. Catal. B, 2016, 188, 313-323.

    46. [46] D. Ma, J. Wu, M. Gao, Y. Xin, C. Chai, Chem. Eng. J., 2017, 316, 461-470.

    47. [47] Z. Wang, J. Lv, K. Dai, L. Lu, C. Liang, L. Geng, Mater. Lett., 2016, 169, 250-253.

    48. [48] J. Zhang, C. Niu, J. Ke, L. Zhou, G. Zeng, Catal. Commun., 2015, 59, 30-34.

    49. [49] A. Meng, B. Zhu, B. Zhong, L. Zhang, B. Cheng, Appl. Surf. Sci., 2017, 422, 518-527.

  • 加载中
计量
  • PDF下载量:  13
  • 文章访问数:  1471
  • HTML全文浏览量:  214
文章相关
  • 收稿日期:  2019-07-01
  • 修回日期:  2019-08-02
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章