
Citation: Peng-Fei Cheng, Ting Feng, Zi-Wei Liu, De-Yao Wu, Jing Yang. Laser-direct-writing of 3D self-supported NiS2/MoS2 heterostructures as an efficient electrocatalyst for hydrogen evolution reaction in alkaline and neutral electrolytes[J]. Chinese Journal of Catalysis, 2019, 40(8): 1147-1152. doi: S1872-2067(19)63390-5

激光直写制备三维自支撑NiS2/MoS2复合电催化剂应用于碱性和中性电解水制氢
本文使用毫秒激光直写法在镍泡沫上合成了三维(3D)自支撑的NiS2/MoS2异质结构,并将其直接用作电解水析氢反应电极,后者在碱性和中性电解质中都表现出了优异的HER活性.毫秒激光直写法具有瞬时高温和快速冷却的特点,常用于纳米材料的制备.毫秒激光作用于溶液中的泡沫镍时,由于瞬间高温使其气化,与溶液中的离子、分子等组成了等离子体,随后借助液体环境的急速冷却限制效应,这团高温混合物在靶材表面原位生长出NiS2/MoS2纳米复合催化剂.通过物相表征,发现NiS2/MoS2异质结构是由高度分散的小尺寸NiS2纳米粒子和MoS2纳米片组成,这些纳米片具有较大的比表面积以及大量NiS2与MoS2之间的界面.借助宏观XPS表征,我们可以确认在NiS2/MoS2异质结构的界面处存在强烈的电子相互作用,说明复合材料两相之间存在异质界面.而异质界面可以作为HER反应过程中的催化位点,有利于水分子的裂解吸附,从而提升复合材料的催化性能.我们对NiS2/MoS2复合催化剂在碱性(1 mol L-1 KOH)和中性(1 mol L-1 KBS)条件下分别进行了HER性能测试.结果表明,在10 mA cm-2的电流密度下,催化剂在碱性和中性电解质中的过电势分别为98和159 mV,Tafel斜率分别为88和130 mV dec-1,并且催化剂具有高效的电荷转移和大的电化学活性表面积,性能优于同体系的其他催化剂.
English
Laser-direct-writing of 3D self-supported NiS2/MoS2 heterostructures as an efficient electrocatalyst for hydrogen evolution reaction in alkaline and neutral electrolytes
-
Key words:
- Heterostructure
- / Hydrogen evolution reaction
- / Laser-direct-writing
-
-
[1] R. Subbaraman, D. Tripkovic, K. C. Chang, D. Strmcnik, A. P. Paulikas, P. Hirunsit, M. Chan, J. Greeley, V. Stamenkovic, N. M. Markovic, Nat. Mater., 2012, 11, 550-557.
-
[2] R. Subbaraman, D. Tripkovic, D. Strmcnik, K. C. Chang, M. Uchi-mura, A. P. Paulikas, V. Stamenkovic, N. M. Markovic, Science, 2012, 334, 1256-1260.
-
[3] M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, N. S. Lewis, Chem. Rev., 2010, 110, 6446-6473.
-
[4] W. C. Xu, H. X. Wang, Chin. J. Catal., 2017, 38, 991-1005.
-
[5] E. Kemppainen, A. Bodin, B. Sebok, T. Pedersen, B. Seger, B. Mei, D. Bae, P. C. K. Vesborg, J. Halme, O. Hansen, P. D. Lund, Energy Environ. Sci., 2015, 8, 2991-2999.
-
[6] J. B. Raoof, S. R. Hosseini, S. Z. Mousavi-Sani, Chin. J. Catal., 2015, 36, 216-220.
-
[7] X. X. Zou, X. X. Huang, A. Goswami, R. Silva, B. R. Sathe, E. Mik-mekova, T. Asefa, Angew. Chem. Int. Ed., 2014, 53, 4372-4376.
-
[8] J. Staszak-Jirkovsky, C. D. Malliakas, P. P. Lopes, N. Danilovic, S. S. Kota, K.-C. Chang, B. Genorio, D. Strmcnik, V. R. Stamenkovic, M. G. Kanatzidis, N. M. Markovic, Nat. Mater., 2016, 15, 197-203.
-
[9] J. W. Li, Q. N. Zhuang, P. M. Xu, D. W. Zhang, L. C. Wei, D. S. Yuan, Chin. J. Catal., 2018, 39, 1403-1410.
-
[10] L. N. Wang, T. Guo, S. Sun, Y. Wang, X. L. Chen, K. N. Zhang, D. X. Zhang, Z. H. Xue, X. B. Zhou, Catal. Lett., 2019, 149, 1197-1210.
-
[11] H. C. Zhang, Y. J. Li, T. H. Xu, J. B. Wang, Z. Y. Huo, P. B. Wan, X. M. Sun, J. Mater. Chem. A, 2015, 3, 15020-15023.
-
[12] J. W. Li, P. M. Xu, R. F. Zhou, R. C. Li, L. J. Qiu, S. P. Jiang, D. S. Yuan, Electrochim. Acta, 2019, 299, 152-162.
-
[13] J. Zhang, T. Wang, D. Pohl, B. Rellinghaus, R. H. Dong, S. H. Liu, X. D. Zhuang, X. L. Feng, Angew. Chem. Int. Ed., 2016, 55, 6702-6707.
-
[14] P. Y. Kuang, T. Tong, K. Fan, J. G. Yu, ACS Catal., 2017, 7, 6179-6187.
-
[15] X. M. Li, M. H. Bi, L. Cui, Y. Z. Zhou, X. W. Du, S. Z. Qiao, J. Yang, Adv. Funct. Mater., 2017, 27, 1605703.
-
[16] J. W. Miao, F. X. Xiao, H. B. Yang, S. Y. Khoo, J. Z. Chen, Z. X. Fan, Y. Y. Hsu, H. M. Chen, H. Zhang, B. Liu, Sci. Adv., 2015, 1, e1500259.
-
[17] G. F. Chen, T. Y. Ma, Z. Q. Liu, N. Li, Y. Z. Su, K. Davey, S. Z. Qiao, Adv. Funct. Mater., 2016, 26, 3314-3323.
-
-

计量
- PDF下载量: 5
- 文章访问数: 1110
- HTML全文浏览量: 269