
Citation: Fei He, Aiyun Meng, Bei Cheng, Wingkei Ho, Jiaguo Yu. Enhanced photocatalytic H2-production activity of WO3/TiO2 step-scheme heterojunction by graphene modification[J]. Chinese Journal of Catalysis, 2020, 41(1): 9-20. doi: S1872-2067(19)63382-6

石墨烯修饰三氧化钨/二氧化钛S型异质结增强的光催化产氢活性
通过复合两个具有合适能带排布的半导体来构建异质结可以大大提高光生载流子的分离,被认为是一种有效的解决方案.最近提出了一种新的S型异质结概念,以解释不同半导体异质界面载流子转移分离的问题.S型异质结是在传统Ⅱ型和Z型(液相Z型、全固态Z型、间接Z型、直接Z型)基础上提出的,但又扬长避短,优于传统Ⅱ型和Z型.通常,S型异质结是由功函数较小、费米能级较高的还原型半导体光催化剂和功函数较大、费米能级较低的氧化型半导体光催化剂构建而成.三氧化钨禁带宽度较小(2.4-2.8eV),功函数较大,是典型的氧化型光催化剂,也是构建S型异质结的理想半导体光催化剂.根据S型电荷转移机制,三氧化钨/二氧化钛复合物在光辐照下,三氧化钨导带上相对无用的电子与二氧化钛价带上相对无用的空穴复合,二氧化钛导带上还原能力较强的电子和三氧化钨价带上氧化能力较强的空穴得以保留,从而在异质界面上实现了氧化还原能力较强的光生电子-空穴对的分离.同时,石墨烯作为一种蜂窝状碳原子二维材料,是理想的电子受体,在异质结光催化剂中能及时转移电子.而且,石墨烯具有较好的导热性和电子迁移率,光吸收强,比表面积大,可为光催化反应提供丰富的吸附和活性位点,已经被认为是一种重要催化剂载体和光电分解水产氢的有效共催化剂.
本文采用简便的一步水热法制备石墨烯修饰的三氧化钨/二氧化钛S型异质结光催化剂.光催化产氢性能测试表明,三氧化钨/二氧化钛/石墨烯复合材料的光催化产氢速率显著提高(245.8 μmol g-1 h-1),约为纯TiO2的3.5倍.高分辨透射电子显微镜、拉曼光谱和X射线光电子能谱结果证明了TiO2和WO3纳米颗粒的紧密接触,并成功负载在还原氧化石墨烯(rGO)上.X射线光电子能谱中Ti 2p结合能的增加证实TiO2和WO3之间强的相互作用和S型异质结的形成.此外,复合材料中的rGO大大拓展了复合物的光吸收范围(紫外-可见漫反射光谱),增强了光热转换效应,而且rGO与TiO2之间形成肖特基结,促进了TiO2导带电子的转移和分离.总之,WO3和TiO2的S型异质结与TiO2和rGO之间的肖特基异质结的协同效应抑制了相对有用的电子和空穴的复合,有利于氧化还原能力较强的载流子的分离和进一步转移,加速了表面产氢动力学,于是增强了三元复合光催化剂的光催化产氢活性.
English
Enhanced photocatalytic H2-production activity of WO3/TiO2 step-scheme heterojunction by graphene modification
-
-
[1] W. Yu, D. Xu, T. Peng, J. Mater. Chem. A, 2015, 3, 19936-19947.
-
[2] J. Fu, J. Yu, C. Jiang, B. Cheng, Adv. Energy Mater., 2018, 8, 1701503.
-
[3] Q. Xu, L. Zhang, J. Yu, S. Wageh, A. A. Al-Ghamdi, M. Jaroniec, Mater. Today, 2018, 21, 1042-1063.
-
[4] M. Tapajna, R. Stoklas, D. Gregusova, F. Gucmann, K. Husekova, S. Hascik, K. Frohlich, L. Toth, B. Pecz, F. Brunner, J. Kuzmik, Appl. Surf. Sci., 2017, 426, 656-661.
-
[5] F. Ye, H. F. Li, H. T. Yu, S. Chen, X. Quan, Appl. Surf. Sci., 2017, 426, 177-184.
-
[6] R. Shen, J. Xie, Q. Xiang, X. Chen, J. Jiang, X. Li, Chin. J. Catal., 2019, 40, 240-288.
-
[7] D. C. Sun, W. Y. Yang, L. Zhou, W. Z. Sun, Q. Li, J. K. Shang, Appl. Catal. B, 2016, 182, 85-93.
-
[8] A. Y. Meng, B. C. Zhu, B. Zhong, L. Y. Zhang, B. Cheng, Appl. Surf. Sci., 2017, 422, 518-527.
-
[9] T. Di, Q. Xu, W. Ho, H. Tang, Q. Xiang, J. Yu, ChemCatChem, 2019, 11, 1394-1411.
-
[10] W. Yu, J. Chen, T. Shang, L. Chen, L. Gu, T. Peng, Appl. Catal. B, 2017, 219, 693-704.
-
[11] Y. Fu, Z. Li, Q. Liu, X. Yang, H. Tang, Chinese J. Catal., 2017, 38, 2160-2170.
-
[12] S. Meng, X. Ning, T. Zhang, S. F. Chen, X. Fu, Phys. Chem. Chem. Phys., 2015, 17, 11577-11585.
-
[13] F. C. Romeiro, M. A. Rodrigues, L. A. J. Silva, A. C. Catto, L. F. da Silva, E. Longo, E. Nossol, R. C. Lima, Appl. Surf. Sci., 2017, 423, 743-751.
-
[14] S. Wang, B. Zhu, M. Liu, L. Zhang, J. Yu, M. Zhou, Appl. Catal. B, 2019, 243, 19-26.
-
[15] J. Low, B. Cheng, J. Yu, Appl. Surf. Sci., 2017, 392, 658-686.
-
[16] Y. Li, F. T. Liu, Y. Chang, J. Wang, C. W. Wang, Appl. Surf. Sci., 2017, 426, 770-780.
-
[17] Z. Wang, T. Hu, K. Dai, J. Zhang, C. Liang, Chin. J. Catal., 2017, 38, 2021-2029.
-
[18] W. L. Dai, J. J. Yu, Y. Q. Deng, X. Hu, T. Y. Wang, X. B. Luo, Appl. Surf. Sci., 2017, 403, 230-239.
-
[19] Y. K. Sohn, W. X. Huang, F. Taghipour, Appl. Surf. Sci., 2017, 396, 1696-1711.
-
[20] X. Ma, Q. Xiang, Y. Liao, T. Wen, H. Zhang, Appl. Surf. Sci., 2018, 457, 846-855.
-
[21] F. Y. Xu, Y. Le, B. Cheng, C. J. Jiang, Appl. Surf. Sci., 2017, 426, 333-341.
-
[22] J. Li, Y. Peng, X. H. Qian, J. Lin, Appl. Surf. Sci., 2018, 452, 437-442.
-
[23] K. Qi, B. Cheng, J. Yu, W. Ho, Chin. J. Catal., 2017, 38, 1936-1955.
-
[24] W. Yu, S. Zhang, J. Chen, P. Xia, M. H. Richter, L. Chen, W. Xu, J. Jin, S. Chen, T. Peng, J. Mater. Chem. A, 2018, 6, 15668-15674.
-
[25] J. Xu, J. Yue, J. Niu, M. Chen, F. Teng, Chin. J. Catal., 2018, 39, 1910-1918.
-
[26] J. Wang, Z. Zhang, X. Wang, Y. Shen, Y. Guo, P. K. Wong, R. Bai, Chin. J. Catal., 2018, 39, 1792-1803.
-
[27] J. Fu, Q. Xu, J. Low, C. Jiang, J. Yu, Appl. Catal. B, 2019, 243, 556-565.
-
[28] J. Jin, J. Yu, D. Guo, C. Cui, W. Ho, Small, 2015, 11, 5262-5271.
-
[29] Y. P. Xie, G. Liu, L. Yin, H. M. Cheng, J. Mater. Chem., 2012, 22, 6746-6751.
-
[30] L. Jiang, X. Yuan, G. Zeng, J. Liang, X. Chen, H. Yu, H. Wang, Z. Wu, J. Zhang, T. Xiong, Appl. Catal. B, 2018, 227, 376-385.
-
[31] D. Spanu, S. Recchia, S. Mohajernia, P. Schmuki, M. Altomare, Appl. Catal. B, 2018, 237, 198-205.
-
[32] H. Q. Gao, P. Zhang, J. H. Hu, J. M. Pan, J. J. Fan, G.S. Shao, Appl. Surf. Sci., 2017, 391, 211-217.
-
[33] J. K. Mu, C. Y. Hou, G. Wang, X. M. Wang, Q. H. Zhang, Y. G. Li, H. Z. Wang, M. F. Zhu, Adv. Mater., 2016, 28, 9491-9497.
-
[34] X. Li, J. Yu, M. Jaroniec, X. Chen, Chem. Rev., 2019, 119, 3962-4179.
-
[35] S. Kumar, N. L. Reddy, H. S. Kushwaha, A. Kumar, M. V. Shankar, K. Bhattacharyya, A. Halder, V. Krishnan, ChemSusChem, 2017, 10, 3588-3603.
-
[36] A. Meng, L. Zhang, B. Cheng, J. Yu, ACS Appl. Mater. Interfaces, 2019, 11, 5581-5589.
-
[37] H. Zhao, S. N. Sun, Y. Wu, P. P. Jiang, Y. M. Dong, Z. C. J. Xu, Carbon, 2017, 119, 56-61.
-
[38] Y. Lu, X. Cheng, G. Tian, H. Zhao, L. He, J. Hu, S.-M. Wu, Y. Dong, G.-G. Chang, S. Lenaerts, S. Siffert, G. Van Tendeloo, Z.-F. Li, L.-L. Xu, X.-Y. Yang, B.-L. Su, Nano Energy, 2018, 47, 8-17.
-
[39] H. Zou, B. He, P. Kuang, J. Yu, K. Fan, Adv. Funct. Mater., 2018, 28, 1706917.
-
[40] L. Pan, J. Zhang, X. Jia, Y.-H. Ma, X. Zhang, L. Wang, J.-J. Zou, Chin. J. Catal., 2017, 38, 253-259.
-
[41] B. Li, B. Xi, Z. Feng, Y. Lin, J. Liu, J. Feng, Y. Qian, S. Xiong, Adv. Mater., 2018, 30, 1705788.
-
[42] B. Gao, Y. Ma, Y. Cao, W. Yang, J. Yao, J. Phys. Chem. B, 2006, 110, 14391-14397.
-
[43] K. K. Akurati, A. Vital, J. P. Dellemann, K. Michalow, T. Graule, D. Fetti, A. Baiker, Appl. Catal. B, 2008, 79, 53-62.
-
[44] A. Gutierrez-Alejandre, J. Ramirez, G. Busca, Langmuir, 1998, 14, 630-639.
-
[45] X. Li, J. G. Yu, S. Wageh, A. A. Al-Ghamdi, J. Xie, Small, 2016, 12, 6640-6696.
-
[46] D. Xu, L. Li, R. He, L. Qi, L. Zhang, B. Cheng, Appl. Surf. Sci., 2018, 434, 620-625.
-
[47] Q. Xiang, J. Yu, M. Jaroniec, J. Am. Chem. Soc., 2012, 134, 6575-6578.
-
[48] A. Kumar, L. Rout, L. S. K. Achary, A. Mohanty, R. S. Dhaka, P. Dash, RSC Adv., 2016, 6, 32074-32088.
-
[49] A. H. Mady, M. L. Baynosa, D. Tuma, J. J. Shim, Appl. Catal. B, 2017, 203, 416-427.
-
[50] H. Khan, M.G. Rigamonti, G.S. Patience, D.C. Boffito, Appl. Catal. B, 2018, 226, 311-323.
-
[51] C. Sotelo-Vazquez, R. Quesada-Cabrera, M. Ling, D. O. Scanlon, A. Kafizas, P. K. Thakur, T. L. Lee, A. Taylor, G. W. Watson, R. G. Palgrave, J. R. Durrant, C. S. Blackman, I. P. Parkin, Adv. Funct. Mater., 2017, 27, 1605413.
-
[52] J. Yu, J. Jin, B. Cheng, M. Jaroniec, J. Mater. Chem. A, 2014, 2, 3407-3416.
-
[53] J. H. Pan, W.I. Lee, Chem. Mater., 2006, 18, 847-853.
-
[54] F. Xu, J. Zhang, B. Zhu, J. Yu, J. Xu, Appl. Catal. B, 2018, 230, 194-202.
-
[55] X. Zhou, X. Zheng, B. Yan, T. Xu, Q. Xu, Appl. Surf. Sci., 2017, 400, 57-63.
-
[56] Q. Liu, F. Wang, H. Lin, Y. Xie, N. Tong, J. Lin, X. Zhang, Z. Zhang, X. Wang, Catal. Sci. Technol., 2018, 8, 4399-4406.
-
[57] M. Seifollahi Bazarjani, M. Hojamberdiev, K. Morita, G. Zhu, G. Cherkashinin, C. Fasel, T. Herrmann, H. Breitzke, A. Gurlo, R. Riedel, J. Am. Chem. Soc., 2013, 135, 4467-4475.
-
[58] M. Karbalaei Akbari, Z. Hai, Z. Wei, C. Detavernier, E. Solano, F. Verpoort, S. Zhuiykov, ACS Appl. Mater. Interfaces, 2018, 10, 10304-10314.
-
[59] M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K. S. W. Sing, Pure Appl. Chem., 2015, 87, 1051-1069.
-
[60] K. He, J. Xie, X. Luo, J. Wen, S. Ma, X. Li, Y. Fang, X. Zhang, Chinese J. Catal., 2017, 38, 240-252.
-
[61] S. K. Deb, Sol. Energy Mater. Sol. Cells, 2008, 92, 245-258.
-
[62] S. Cong, F. Geng, Z. Zhao, Adv. Mater., 2016, 28, 10518-10528.
-
[63] L. Liu, Y. Jiang, H. Zhao, J. Chen, J. Cheng, K. Yang, Y. Li, ACS Catal., 2016, 6, 1097-1108.
-
[64] J. Low, B. Cheng, J. Yu, M. Jaroniec, Energy Storage Mater., 2016, 3, 24-35.
-
[65] P. Srinivasa Rao, S. Bala Murali Krishna, S. Yusub, P. Ramesh Babu, C. Tirupataiah, D. Krishna Rao, J. Mol. Struct., 2013, 1036, 452-463.
-
[66] N. Zhang, X. Li, Y. Liu, R. Long, M. Li, S. Chen, Z. Qi, C. Wang, L. Song, J. Jiang, Y. Xiong, Small, 2017, 13, 1701354.
-
[67] Z. Wang, C. Yang, T. Lin, H. Yin, P. Chen, D. Wan, F. Xu, F. Huang, J. Lin, X. Xie, M. Jiang, Adv. Funct. Mater., 2013, 23, 5444-5450.
-
[68] Z.-F. Huang, J. Song, L. Pan, X. Zhang, L. Wang, J. J. Zou, Adv. Mater., 2015, 27, 5309-5327.
-
[69] Z. He, J. Fu, B. Cheng, J. Yu, S. Cao, Appl. Catal. B, 2017, 205, 104-111.
-
[70] J. Fu, C. Bie, B. Cheng, C. Jiang, J. Yu, ACS Sustain. Chem. Eng., 2018, 6, 2767-2779.
-
[71] J. Low, J. Yu, W. Ho, J. Phys. Chem. Lett., 2015, 6, 4244-4251.
-
[72] J. Low, B. Dai, T. Tong, C. Jiang, J. Yu, Adv. Mater., 2019, 31, 1802981.
-
-

计量
- PDF下载量: 101
- 文章访问数: 4344
- HTML全文浏览量: 1064