K2S2O8-Initiated Cascade Cyclization of 2-Alkynylnitriles with Sodium Sulfinates: Access to Fused Cyclopenta[gh]phenanthridines

Zhichao Chen Hong Zhang Shufeng Zhou Xiuling Cui

Citation:  Chen Zhichao, Zhang Hong, Zhou Shufeng, Cui Xiuling. K2S2O8-Initiated Cascade Cyclization of 2-Alkynylnitriles with Sodium Sulfinates: Access to Fused Cyclopenta[gh]phenanthridines[J]. Chinese Journal of Organic Chemistry, 2020, 40(11): 3866-3872. doi: 10.6023/cjoc202007005 shu

过硫酸钾促进2-炔芳基腈与亚磺酸钠的自由基串联环化:构筑稠环环戊烯并[gh]菲啶

    通讯作者: 周树锋, szhou@hqu.edu.cn
    崔秀灵, cuixl@hqu.edu.cn
  • 基金项目:

    高等学校学科创新引智计划 111计划,No.BC2018061

    国家自然科学基金 21572072

    国家自然科学基金(No.21572072)和高等学校学科创新引智计划(111计划,No.BC2018061)资助项目

摘要: 报道了一种以2-炔芳基腈和亚磺酸钠为原料,过硫酸钾为氧化剂,通过自由基串联环化反应一步构筑环戊烯并[gh]菲啶的新方法.该反应具有反应条件温和、原子经济性高、底物适应性较强等优势.利用此方法简便地合成了多种潜在的具有生物活性的4-磺化环戊烯并菲啶.

English

  • Cyclopenta[ij]isoquinoline, a unique N-heteropolycyclic skeleton, is widely found in natural and bioactive molecules, has exhibited diverse biological activities.[1] Among which, cyclopenta[gh]phenanthridine has attracted growing interest recently from organic chemists due to their antihuman immunodeficiency virus (HIV) activity.[2] Although some work on the synthesis of cyclopenta[gh]phenanthridine has been reported, [3] some disadvantages exist with these methods, such as complicated operation, low reaction efficiency and poor substrate adaptability. Therefore, the development of alternative approach for the facile and efficient synthesis of cyclopenta[gh]phenanthridine is of great significance.

    Sulfone is also an important and essential structural scaffold in pharmaceuticals and biologically active compounds, as well as functional materials.[4] Numerous studies on the synthesis of sulfone derivatives have been reported.[5] The common means for preparing sulfones, including the oxidation of sulfides, [6] sulfonylation of arenes, [7] and transition metal catalyzed cross coupling, are available.[8] Among these, sulfinate salts offer operating convenience and commercial availability for the preparation of sulfones. Based on the importance of cyclopenta[gh]phenanthridine and sulfone in various fields, efficient methods for the synthesis of sulfonated cyclopenta[gh]phenanthridine are valuable. Recently, radical cascade cyclization has emerged as a powerful strategy for the preparation of heterocycles since core structures can be built in a single operation comprising multiple bond forming steps, [9] thereby increasing the economy of the overall process. Inspired by recent progress on cyano-participated radical addition/cyclization for the formation of cyclic compounds, [10] multifunctionalized 2-alkynylnitriles were designed as radical acceptors, and we envisioned that the oxidant-mediated sulfonylation of unactivated alkynes could generate secondary alkenyl radicals, which could be coupled with late-stage radical cyclization, leading to the functionalized polycyclic heterocycles. Herein, a K2S2O8 mediated cascade cyclization of 2-alkynylnitriles with sodium sulfinates was disclosed to construct sulfonated cyclopenta[gh]phenanthridines.

    Initially, 3-(phenylethynyl)-[1, 1'-biphenyl]-2-carbonitrile (1a) and sodium 4-methylbenzenesulfinate (2a) were utilized as the model substrates to optimize the reaction conditions. The results are summarized in Table 1. It was found that the desired product 3aa was obtained in 41% yield when the reaction was performed in the presence of NH4S2O8 as oxidant (3.5 equiv.) in CH3CN/H2O (V:V=4:1) at 80 ℃ for 12 h under N2 atmosphere (Entry 1). Encouraged by this result, the reaction conditions were further optimized by testing various oxidants. The investigation results showed that K2S2O8 as an oxidant gave the best yield (83%), whereas other oxidants such as Na2S2O8, t-butyl hydroperoxide (TBHP), di-tert-butyl peroxide (DTBP), t-butyl peroxybenzoate (TBPB), PhI(OAc)2, PhI(TFA)2 and oxone did not promote or only sluggishly promoted this reaction (Table 1, Entries 3~9). Among the solvents tested, CH3CN/H2O (V:V=4:1) was found to be the best one (Table 1, Entries 10~17). In contrast, the product 3aa was isolated in low yield when the reaction was performed in the absence of H2O or CH3CN (Table 1, Entries 18 and 19). In addition, changing the loading of K2S2O8 did not further improve the reaction either (Table 1, Entries 20 and 21). It should be noted that running the reaction at either 60 or 100 ℃ gave inferior results, which demonstrated that temperature is important (Table 1, Entries 22 and 23). The control experiment showed that no reaction occurred in the absence of K2S2O8 (Table 1, Entry 24).

    Table 1

    Table 1.  Optimization of reaction conditionsa
    下载: 导出CSV
    Entry Oxidant Solvent (V:V) Yiledb/%
    1 NH4S2O8 CH3CN/H2O (4:1) 41
    2 K2S2O8 CH3CN/H2O (4:1) 83
    3 Na2S2O8 CH3CN/H2O (4:1) 69
    4 TBHP CH3CN/H2O (4:1) Trace
    5 DTBP CH3CN/H2O (4:1) N.r
    6 TBPB CH3CN/H2O (4:1) Trace
    7 PhI(OAc)2 CH3CN/H2O (4:1) Trace
    8 PhI(TFA)2 CH3CN/H2O (4:1) 9
    9 Oxone CH3CN/H2O (4:1) 18
    10 K2S2O8 Actone/H2O (4:1) 36
    11 K2S2O8 DMSO/H2O (4:1) Trace
    12 K2S2O8 DCE/H2O (4:1) Trace
    13 K2S2O8 CH3CN/H2O (1:1) 56
    14 K2S2O8 CH3CN/H2O (3:1) 75
    15 K2S2O8 CH3CN/H2O (5:1) 69
    16 K2S2O8 CH3CN/H2O (6:1) 52
    17 K2S2O8 CH3CN/H2O (9:1) 49
    18 K2S2O8 CH3CN 39
    19 K2S2O8 H2O Trace
    20c K2S2O8 CH3CN/H2O (4:1) 54
    21d K2S2O8 CH3CN/H2O (4:1) 42
    22e K2S2O8 CH3CN/H2O (4:1) 60
    23f K2S2O8 CH3CN/H2O (4:1) 78
    24 CH3CN/H2O (4:1) N.r
    a Reaction conditions: 1a (0.2 mmol), 2a (0.5 mmol), oxidant (0.7 mmol), solvent (3 mL), 80 ℃, 12 h, N2 atmosphere. N.r.=no reaction; b Isolated yield; c K2S2O8 (0.40 mmol); d K2S2O8 (0.80 mmol); e 60 ℃; f 100 ℃.

    With the optimized conditions in hand (Table 1, Entry 2), the scope of substrates was then studied, as shown in Table 2. The substituent effect on the benzene ring was first examined. Both electron-donating and electron-with-drawing groups on the para-position of aromatic ring produced the corresponding cyclopenta[gh]phenanthridines 3aa~3af in 49%~83% yields. When the ortho position on the benzene ring of the substrate was substituted with methyl, no desired product 3aj was obtained perhaps due to the steric effect. Next, the effect of the substitution functional groups on the arene ring of the arylalkynyl moiety was investigated. The groups, such as methyl, ethyl, tert-butyl, methoxy, fluoro, chloro, and bromo groups, were examined and gave the corresponding products 3ah~3ap in 56%~86% yields. When the arene ring of the arylalkynyl moiety was replaced by a heterocyclic ring, no desired products 3ax and 3ay were formed. Finally, the reactions of 3-(phenylethynyl)-[1, 1'-biphenyl]-2-carbonitrile (1a) with various sodium sulfinates were examined. Substituents in sodium arylsulfinates, such as p-H, p-F, p-Cl, p-Br, m-Br and m-F on the aromatic ring were compatible under the optimized conditions (3aq~3av). Moreover, when sodium cyclopropyl sulfinate were used as coupling partner, the desired product 3aw was observed in 43% yield.

    Table 2

    Table 2.  Scope of substratesa, b
    下载: 导出CSV

    To shed light on the possible reaction mechanism, a radical-trapping experiment was carried out, as shown in Scheme 1. Addition of radical inhibitors, tetramethylpiperidin-1-oxyl and butylated hydroxytoluene, resulted in the inhibition of the reaction, suggesting that a radical process might be involved.

    Scheme 1

    Scheme 1.  Control experiments

    On the base of the above-mentioned experiments and literature reports, [11] a plausible mechanism is shown in Scheme 2. First, sodium benzenesulfinate 2a was oxidized by K2S2O8 to generate benzenesulfonyl radical A. Then, intermolecular addition of A to 1a offered the alkenyl radical intermediate B, which underwent rapid intramolecular cyclization to give the iminyl radical C. Subsequently, radical intermediate D could be formed by intramolecular addition of iminyl radical C to the aromatic ring. Oxidation of D produced the corresponding cation E, which underwent deprotonation to yield the desired product 3a.

    Scheme 2

    Scheme 2.  Proposed reaction mechanism

    In conclusion, a K2S2O8 initiated cascade of sulfonyl radical addition and cyclization of 2-alkynylnitriles with sodium sulfinates were developed, providing direct access to various 4-sulfonated cyclopeanta[gh]phenanthridines with C—S/C—C/C—N bond formation in one pot. This protocol is practical under the mild conditions and has good tolerance towards various functional groups. When we prepare the manuscript, Zhou's group reported similar work.[12] Sulfurous acid was used as a free radical source, TBPB as an oxidant, and methylene chloride as a solvent in their procedure. In contrast, we use the cheaper inorganic salt K2S2O8 as an oxidant, environmentally benign water as a co-solvent, which makes our reaction more economical and green.

    1H NMR spectra were recorded on 400 MHz spectrometer, and 13C NMR spectra were recorded on 100 MHz spectrometer, Chemical shifts were recorded as residual signals relative to the solvent. High-resolution mass spectra (HRMS) were equipped with an ESI source and a TOF detector. Column chromatography was performed on silica gel (70~230 mesh ASTM) using the reported eluent. Thin-layer chromatography (TLC) was carried out on 4 cm×15 cm plates with a layer thickness of 0.2 mm (silica gel 60 F254). All reagents were purchased from commercial suppliers and used directly after purchased. All solvents were used without special precautions to squeeze out moisture.

    An oven-dried Schlenk tube was equipped with a magnetic stir bar, 1 (0.2 mmol), 2 (2.5 equiv., 0.5 mmol), K2S2O8 (3.5 equiv., 0.7 mmol). The flask was evacuated and backfilled with N2 for 3 times. Then CH3CN/H2O (V:V=4:1) (3 mL) was added. The tube was then sealed and the mixture was stirred for 12 h at 80 ℃ under N2 (101 kPa). After the reaction was finished, the solvent was concentrated in vacuo and the residue was purified by chromatography on silica gel to afford the corresponding products 3.

    5-Phenyl-4-tosylcyclopenta[gh]phenanthridine (3aa): Yellow solid, 83% yield. m.p. 195~196 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.54 (dd, J=6.2, 3.4 Hz, 1H), 8.36 (dd, J=9.9, 7.7 Hz, 2H), 8.31 (dd, J=6.2, 3.4 Hz, 1H), 7.87 (dd, J=8.1, 7.3 Hz, 1H), 7.78~7.72 (m, 2H), 7.70~7.64 (m, 2H), 7.57 (d, J=8.3 Hz, 2H), 7.53~7.47 (m, 3H), 7.11 (d, J=8.3 Hz, 2H), 2.32 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 161.4, 148.3, 148.2, 144.3, 142.8, 138.5, 135.3, 132.9, 132.4, 131.2, 129.8, 129.5, 129.4, 129.0, 128.9, 128.7, 127.7, 127.6, 125.4, 124.5, 123.2, 122.9, 119.8, 21.5; HRMS (ESI) calcd for C28H20NO2S [M+H]+ 434.1209; found 434.1211.

    8-Methyl-5-phenyl-4-tosylcyclopenta[gh]phenanthridine (3ab): Yellow solid, 49% yield. m.p. 184~186 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.41 (d, J=8.2 Hz, 1H), 8.32 (t, J=7.8 Hz, 2H), 8.11 (s, 1H), 7.84 (t, J=7.7 Hz, 1H), 7.69~7.63 (m, 2H), 7.57 (d, J=8.3 Hz, 3H), 7.53~7.46 (m, 3H), 7.11 (d, J=8.1 Hz, 2H), 2.57 (s, 3H), 2.32 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 161.3, 148.5, 148.3, 144.2, 142.5, 139.2, 138.6, 135.2, 132.8, 131.9, 131.1, 130.5, 129.9, 129.4, 129.4, 129.0, 127.6, 127.6, 125.0, 123.1, 122.6, 122.2, 119.5, 21.5; HRMS (ESI) calcd for C29H21NO2SNa [M+Na]+ 470.1185, found 470.1183.

    8-Fluoro-5-phenyl-4-tosylcyclopenta[gh]phenanthridine (3ac): Yellow solid, 65% yield. m.p. 178~180 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.53~8.45 (m, 1H), 8.31 (dd, J=13.8, 7.7 Hz, 2H), 7.95 (dd, J=10.0, 2.5 Hz, 1H), 7.86 (t, J=7.7 Hz, 1H), 7.65 (dd, J=7.6, 1.8 Hz, 2H), 7.56 (d, J=8.3 Hz, 2H), 7.54~7.47 (m, 4H), 7.11 (d, J=8.1 Hz, 2H), 2.32 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 162.6, 162.5 (d, J=250.2 Hz), 149.5 (d, J=12.4 Hz), 147.9, 144.4, 143.3, 138.3, 135.4, 133.3, 131.1, 129.6, 129.4, 128.8, 127.7, 127.6, 125.4, 124.5 (d, J=9.4 Hz), 123.1, 121.2, 119.4, 117.7 (d, J=24.0 Hz), 116.8 (d, J=21.3 Hz), 21.5; 19F NMR (376 MHz, CDCl3) δ: -110.8 (s); HRMS (ESI) calcd for C28H18FNO2SNa [M+Na]+ 474.0934, found 474.0936.

    8-Chloro-5-phenyl-4-tosylcyclopenta[gh]phenanthridine (3ad): Yellow solid, 61% yield. m.p. 193~194 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.41 (d, J=8.7 Hz, 1H), 8.34 (d, J=7.1 Hz, 1H), 8.29 (dd, J=5.2, 3.1 Hz, 2H), 7.89~7.82 (m, 1H), 7.70~7.62 (m, 3H), 7.56 (d, J=8.3 Hz, 2H), 7.53~7.46 (m, 3H), 7.11 (d, J=8.1 Hz, 2H), 2.32 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 162.5, 148.7, 147.9, 144.4, 143.4, 138.3, 135.4, 134.6, 133.3, 131.4, 131.1, 129.6, 129.6, 129.4, 129.1, 128.6, 127.7, 127.6, 125.7, 124.0, 123.1, 122.9, 21.5; HRMS (ESI) calcd for C28H18Cl-NO2SNa [M+Na]+ 490.0639, found 490.0639.

    5, 8-Diphenyl-4-tosylcyclopenta[gh]phenanthridine (3ae): Yellow solid, 50% yield. m.p. 190~191 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.57 (dd, J=6.5, 5.3 Hz, 1H), 8.36 (dd, J=9.9, 7.7 Hz, 1H), 8.01 (dd, J=8.4, 1.9 Hz, 1H), 7.90~7.83 (m, 1H), 7.78~7.73 (m, 1H), 7.72~7.66 (m, 1H), 7.58 (d, J=8.3 Hz, 1H), 7.54~7.45 (m, 3H), 7.44~7.37 (m, 1H), 7.12 (d, J=8.1 Hz, 1H), 2.33 (s, 2H); 13C NMR (100 MHz, CDCl3) δ: 161.8, 148.7, 148.1, 144.3, 142.9, 141.7, 139.7, 138.5, 135.3, 133.0, 131.2, 130.2, 129.8, 129.6, 129.4, 129.0, 128.9, 127.9, 127.8, 127.7, 127.6, 127.3, 125.4, 123.5, 123.4, 123.3, 119.8, 21.5; HRMS (ESI) calcd for C34H23NO2SNa [M+Na]+ 532.1342, found 532.1347.

    5-Phenyl-4-tosyl-8-(trifluoromethyl)cyclopenta[gh]phenanthridine (3af): Yellow solid, 60% yield. m.p. 213~214 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.62 (d, J=9.3 Hz, 1H), 8.39 (dd, J=11.5, 7.7 Hz, 1H), 7.95~7.88 (m, 1H), 7.66 (dd, J=7.6, 1.7 Hz, 1H), 7.57 (d, J=8.3 Hz, 1H), 7.54~7.47 (m, 1H), 7.12 (d, J=8.2 Hz, 1H), 2.33 (s, 2H); 13C NMR (100 MHz, CDCl3) δ: 162.8, 147.8, 147.4, 144.5, 143.7, 138.1, 135.4, 133.6, 130.7 (q, J=33.0 Hz), 131.0, 130.9, 130.6, 130.2, 129.7 (q, J=4.2 Hz), 129.5, 129.4, 128.4, 127.8, 127.6, 126.5, 124.4 (q, J=3.4 Hz), 123.9, 123.8 (q, J=271.3 Hz), 123.39, 120.5, 21.5; 19F NMR (376 MHz, CDCl3) δ: -62.2 (s); HRMS (ESI) calcd for C29H18F3NO2S [M+Na]+ 524.0903, found 524.0901.

    5-(p-Tolyl)-4-tosylcyclopenta[gh]phenanthridine (3ah): Yellow solid, 57% yield. m.p. 197~198 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.54~8.48 (m, 1H), 8.37~8.27 (m, 3H), 7.87~7.81 (m, 1H), 7.77~7.70 (m, 2H), 7.62 (d, J=8.2 Hz, 4H), 7.33 (d, J=7.9 Hz, 2H), 7.13 (d, J=8.2 Hz, 2H), 2.49 (s, 3H), 2.33 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 161.5, 148.5, 148.2, 144.2, 142.0, 139.8, 138.7, 135.4, 132.8, 132.3, 131.2, 129.4, 129.0, 128.8, 128.7, 128.4, 127.5, 126.9, 125.1, 124.5, 123.09, 122.9, 119.9, 21.6, 21.5; HRMS (ESI) calcd for C29H21NO2SNa [M+Na]+ 470.1185, found 470.1182.

    5-(4-Methoxyphenyl)-4-tosylcyclopenta[gh]phenanthridine (3ai): Yellow solid, 62% yield. m.p. 190~192 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.53 (dd, J=6.2, 3.4 Hz, 1H), 8.36~8.27 (m, 3H), 7.84 (dd, J=8.1, 7.3 Hz, 1H), 7.78~7.72 (m, 4H), 7.61 (d, J=8.3 Hz, 2H), 7.13 (d, J=8.2 Hz, 2H), 7.08~7.02 (m, 2H), 3.93 (s, 3H), 2.32 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 161.5, 161.0, 148.2, 148.1, 144.2, 141.2, 138.7, 135.6, 133.1, 132.9, 132.3, 129.4, 129.0, 128.8, 128.7, 127.5, 125.0, 124.5, 122.9, 122.8, 122.1, 119.9, 113.3, 55.4, 21.5; HRMS (ESI) calcd for C29H21NO3SNa [M+Na]+ 486.1134, found 486.1133.

    5-(4-Ethylphenyl)-4-tosylcyclopenta[gh]phenanthridine (3aj): Yellow solid, 60% yield. m.p. 195~196 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.55~8.48 (m, 1H), 8.32 (dt, J=9.8, 6.4 Hz, 3H), 7.85 (t, J=7.7 Hz, 1H), 7.78~7.70 (m, 2H), 7.61 (dd, J=14.8, 8.2 Hz, 4H), 7.33 (d, J=8.1 Hz, 2H), 7.10 (d, J=8.2 Hz, 2H), 2.78 (q, J=7.6 Hz, 2H), 2.32 (s, 3H), 1.35 (t, J=7.6 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ: 161.5, 148.3, 148.2, 146.0, 144.1, 142.1, 138.5, 135.4, 132.9, 132.3, 131.3, 129.3, 129.0, 128.8, 128.7, 127.6, 127.2, 127.1, 125.2, 124.5, 123.0, 122.9, 119.8, 28.9, 21.5, 15.5; HRMS (ESI) calcd for C30H24NO2S [M+H]+ 462.1522, found 462.1522.

    5-(4-(Tert-butyl)phenyl)-4-tosylcyclopenta[gh]phenanthridine (3ak): Yellow solid, 86% yield. m.p. 192~194 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.53~8.47 (m, 1H), 8.36~8.28 (m, 3H), 7.84 (d, J=0.9 Hz, 1H), 7.76~7.69 (m, 2H), 7.64 (d, J=8.4 Hz, 2H), 7.56 (d, J=8.3 Hz, 2H), 7.49 (d, J=8.4 Hz, 2H), 7.06 (d, J=8.2 Hz, 2H), 2.30 (s, 3H), 1.42 (s, 9H); 13C NMR (100 MHz, CDCl3) δ: 161.4, 152.7, 148.2, 148.1, 144.0, 142.3, 138.3, 135.5, 132.8, 132.3, 131.0, 129.2, 129.0, 128.8, 128.6, 127.6, 126.8, 125.2, 124.7, 124.5, 123.0, 122.9, 119.8, 34.8, 31.3, 21.5; HRMS (ESI) calcd for C32H27NO2SNa [M+Na]+ 512.1655, found 512.1654.

    5-(4-Fluorophenyl)-4-tosylcyclopenta[gh]phenanthridine (3al): Yellow solid, 80% yield. m.p. 195~197 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.51 (dd, J=6.2, 3.3 Hz, 1H), 8.37~8.26 (m, 3H), 7.88~7.82 (m, 1H), 7.78~7.69 (m, 4H), 7.59 (d, J=8.3 Hz, 2H), 7.20 (t, J=8.7 Hz, 2H), 7.14 (d, J=8.2 Hz, 2H), 2.33 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 163.7 (d, J=250.1 Hz), 161.1, 148.1, 146.9, 144.5, 142.7, 138.4, 135.1, 133.4, 133.3, 131.4, 130.4, 129.5, 129.0 (d, J=13.6 Hz), 128.8, 127.5, 125.7 (d, J=3.8 Hz), 125.4, 124.5, 123.3, 122.9, 119.7, 114.9 (d, J=21.7 Hz), 21.5; 19F NMR (376 MHz, CDCl3) δ: -111.0 (s). HRMS (ESI) calcd for C28H18FNO2SNa [M+Na]+ 474.0934, found 474.0939.

    5-(4-Chlorophenyl)-4-tosylcyclopenta[gh]phenanthridine (3am): Yellow solid, 73% yield. m.p. 199~200 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.51 (dd, J=6.2, 3.3 Hz, 1H), 8.33 (dd, J=16.4, 7.7 Hz, 2H), 8.30~8.26 (m, 1H), 7.85 (dd, J=8.2, 7.3 Hz, 1H), 7.79~7.71 (m, 2H), 7.68~7.58 (m, 4H), 7.51~7.45 (m, 2H), 7.15 (d, J=8.1 Hz, 2H), 2.34 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 160.9, 148.1, 146.6, 144.6, 143.0, 138.4, 135.9, 135.0, 132.9, 132.6, 132.2, 129.6, 129.0, 129.0, 128.9, 128.2, 128.0, 127.5, 125.4, 124.5, 123.4, 122.9, 119.7, 21.5; HRMS (ESI) calcd for C28H18ClNO2SNa [M+Na]+ 490.0639, found 490.0639.

    5-(4-Bromophenyl)-4-tosylcyclopenta[gh]phenanthridine (3an): Yellow solid, 78% yield. m.p. 206~208 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.50 (dd, J=6.2, 3.3 Hz, 1H), 8.37 (s, 1H), 8.33 (dd, J=15.4, 7.7 Hz, 2H), 8.29~8.26 (m, 1H), 7.84 (dd, J=8.1, 7.3 Hz, 1H), 7.77~7.71 (m, 2H), 7.66~7.55 (m, 6H), 7.16 (d, J=8.2 Hz, 2H), 2.34 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 160.8, 148.1, 146.6, 144.6, 144.0, 138.3, 135.0, 132.9, 132.8, 132.2, 130.9, 129.6, 129.0, 129.0, 128.9, 128.7, 127.5, 125.4, 124.5, 124.3, 123.4, 122.9, 119.6, 21.5; HRMS (ESI) calcd for C28H18BrNO2SNa [M+Na]+ 534.0134, found 534.0134.

    5-(m-Tolyl)-4-tosylcyclopenta[gh]phenanthridine (3ao): Yellow solid, 56% yield, m.p. 196~198 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.56~8.50 (m, 1H), 8.39~8.29 (m, 3H), 7.86 (dd, J=8.2, 7.2 Hz, 1H), 7.78~7.71 (m, 2H), 7.59 (d, J=8.3 Hz, 2H), 7.46~7.35 (m, 3H), 7.31 (d, J=7.5 Hz, 1H), 7.12 (d, J=8.1 Hz, 2H), 2.43 (s, 3H), 2.33 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 161.5, 148.4, 148.2, 144.2, 142.8, 138.5, 137.2, 135.3, 132.9, 132.4, 131.5, 130.3, 129.7, 129.3, 129.0, 128.8, 128.7, 128.1, 127.6, 127.6, 125.3, 124.5, 123.1, 122.9, 119.8, 21.5, 21.5; HRMS (ESI) calcd for C29H22NO2S [M+H]+ 448.1366, found 448.1369.

    5-(3-Fluorophenyl)-4-tosylcyclopenta[gh]phenanthridine (3ap): Yellow solid, 70% yield. m.p. 194~195 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.55~8.49 (m, 1H), 8.36 (dd, J=10.3, 7.7 Hz, 2H), 8.30 (dd, J=6.5, 3.1 Hz, 1H), 7.87 (dd, J=8.1, 7.3 Hz, 1H), 7.79~7.72 (m, 2H), 7.61 (d, J=8.3 Hz, 2H), 7.47 (dd, J=8.5, 3.4 Hz, 2H), 7.37~7.31 (m, 1H), 7.24~7.17 (m, 1H), 7.15 (d, J=8.1 Hz, 2H), 2.34 (s, 6H); 13C NMR (100 MHz, CDCl3) δ: 162.0 (d, J=245.7 Hz), 160.9, 148.2, 146.2, 144.6, 143.5, 138.2, 134.9, 132.9, 132.3, 131.8 (d, J=8.8 Hz), 129.5, 129.3 (d, J=8.4 Hz), 129.1, 129.0, 128.9, 127.6, 127.1 (d, J=2.9 Hz), 125.7, 124.5, 123.6, 122.9, 119.6, 118.1 (d, J=22.9 Hz), 116.4 (d, J=21.1 Hz), 21.53; 19F NMR (376 MHz, CDCl3) δ: -113.5 (s); HRMS (ESI) calcd for C28H18FNO2SNa [M+Na]+ 474.0934, found 474.0935.

    5-Phenyl-4-(phenylsulfonyl)cyclopenta[gh]phenanthridine (3aq): Yellow solid, 78% yield. m.p. 193~194 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.53 (dd, J=6.1, 3.4 Hz, 1H), 8.37 (dd, J=7.7, 3.0 Hz, 2H), 8.30 (dt, J=7.1, 3.5 Hz, 1H), 7.87 (dd, J=8.1, 7.3 Hz, 1H), 7.78~7.72 (m, 2H), 7.68 (td, J=8.1, 1.5 Hz, 4H), 7.55~7.42 (m, 4H), 7.31 (t, J=7.8 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ: 161.2, 148.6, 148.3, 142.5, 141.3, 135.2, 133.2, 132.9, 132.4, 131.1, 129.7, 129.6, 129.0, 128.9, 128.8, 128.7, 127.7, 127.5, 125.4, 124.5, 123.3, 122.9, 119.7; HRMS (ESI) calcd for C27H17NO2SNa [M+Na]+ 442.0872, found 442.0876.

    4-((4-Fluorophenyl)sulfonyl)-5-phenylcyclopenta[gh]phenanthridine (3ar): Yellow solid, 72% yield. m.p. 182~183 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.58~8.52 (m, 1H), 8.38 (dd, J=10.4, 7.7 Hz, 2H), 8.34~8.27 (m, 1H), 7.88 (dd, J=8.2, 7.2 Hz, 1H), 7.80~7.73 (m, 2H), 7.70~7.60 (m, 4H), 7.56~7.46 (m, 3H), 7.00~6.90 (m, 2H); 13C NMR (100 MHz, CDCl3) δ: 165.4 (d, J=256.9 Hz), 161.1, 148.5, 148.3, 142.5, 137.3 (d, J=3.0 Hz), 135.1, 132.9, 132.4, 131.1, 130.4, 130.3, 129.7, 129.1, 128.9 (d, J=10.0 Hz), 127.8, 125.4, 124.6, 123.4, 122.9, 119.7 (s), 115.9 (d, J=22.7 Hz); 19F NMR (376 MHz, CDCl3) δ: -103.8 (s); HRMS (ESI) calcd for C27H16FNO2SNa [M+Na]+ 460.0778, found 460.0777.

    4-((4-Chlorophenyl)sulfonyl)-5-phenylcyclopenta[gh]phenanthridine (3as): Yellow solid, 74% yield. m.p. 183~185 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.60~8.53 (m, 1H), 8.40 (dd, J=15.4, 7.7 Hz, 2H), 8.34 (dd, J=6.3, 3.3 Hz, 1H), 7.90 (dd, J=8.2, 7.2 Hz, 1H), 7.83~7.74 (m, 2H), 7.71~7.64 (m, 2H), 7.61~7.57 (m, 2H), 7.57~7.50 (m, 3H), 7.31~7.25 (m, 2H); 13C NMR (100 MHz, CDCl3) δ: 161.0, 148.8, 148.3, 142.2, 139.9, 139.7, 135.0, 132.9, 132.4, 131.1, 129.7, 129.6, 129.1, 129.9, 128.9, 127.8, 125.4, 124.6, 123.4, 122.9, 119.7; HRMS (ESI) calcd for C27H16ClNO2SNa [M+Na]+ 476.0482, found 476.0479.

    4-((4-Bromophenyl)sulfonyl)-5-phenylcyclopenta[gh]phenanthridine (3at): Yellow solid, 65% yield. m.p. 185~187 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.56 (dd, J=6.1, 3.4 Hz, 1H), 8.39 (dd, J=15.9, 7.7 Hz, 2H), 8.33 (dt, J=7.1, 3.5 Hz, 1H), 7.90 (dd, J=8.2, 7.2 Hz, 1H), 7.82~7.76 (m, 2H), 7.68 (dt, J=3.9, 2.3 Hz, 2H), 7.59~7.48 (m, 5H), 7.47~7.42 (m, 2H); 13C NMR (100 MHz, CDCl3) δ: 161.0, 148.9, 148.3, 142.1, 140.3, 135.0, 132.9, 132.4, 132.0, 131.1, 129.8, 129.6, 129.1, 129.0, 128.9, 128.5, 127.8, 125.4, 124.5, 123.4, 122.9, 119.7; HRMS (ESI) calcd for C27H17BrNO2S [M+H]+ 498.0158, found 498.0162.

    4-((3-Bromophenyl)sulfonyl)-5-phenylcyclopenta[gh]phenanthridine (3au): Yellow solid, 46% yield. m.p. 186~188 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.58~8.53 (m, 1H), 8.39 (dd, J=12.2, 7.7 Hz, 2H), 8.34~8.28 (m, 1H), 7.90 (dd, J=8.1, 7.3 Hz, 1H), 7.80~7.74 (m, 2H), 7.71 (t, J=1.7 Hz, 1H), 7.63 (dd, J=7.7, 1.7 Hz, 2H), 7.59~7.48 (m, 5H), 7.16 (t, J=8.0 Hz, 1H), 1.65 (s, 2H); 13C NMR (100 MHz, CDCl3) δ: 161.0, 149.1, 148.3, 142.9, 142.0, 136.2, 135.0, 133.0, 132.4, 131.0, 130.6, 130.2, 129.9, 129.5, 129.2, 129.0, 129.0, 127.9, 126.0, 125.5, 124.6, 123.5, 123.0, 122.6, 119.6; HRMS (ESI) calcd for C27H16BrNO2SNa [M+Na]+ 519.9977, found 519.9974.

    4-((3-Fluorophenyl)sulfonyl)-5-phenylcyclopenta[gh]phenanthridine (3av): Yellow solid, 54% yield. m.p. 184~186 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.57~8.50 (m, 1H), 8.37 (dd, J=13.5, 7.7 Hz, 2H), 8.31 (dt, J=7.0, 3.6 Hz, 1H), 7.88 (t, J=7.7 Hz, 1H), 7.79~7.73 (m, 2H), 7.66 (dd, J=7.6, 1.8 Hz, 2H), 7.57~7.48 (m, 3H), 7.46 (d, J=7.8 Hz, 1H), 7.36~7.31 (m, 1H), 7.29 (dd, J=8.0, 2.8 Hz, 1H), 7.14 (ddd, J=10.1, 7.9, 2.1 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ: 162.0 (d, J=251.3 Hz), 160.94 (s), 149.2, 148.3, 143.3, 143.2, 141.8, 135.0, 133.0, 132.4, 131.1, 130.5 (d, J=7.7 Hz), 129.8, 129.6, 129.1, 129.0 (d, J=6.7 Hz), 127.8, 125.4, 124.5, 123.5, 123.3 (d, J=3.3 Hz), 122.9, 120.5 (d, J=21.4 Hz), 119.6, 114.9 (d, J=24.6 Hz); 19F NMR (376 MHz, CDCl3) δ: -109.8 (s); HRMS (ESI) calcd for C27H16FNO2SNa [M+Na]+ 460.0778, found 460.0779.

    4-(Cyclopropylsulfonyl)-5-phenylcyclopenta[gh]phenanthridine (3aw): Yellow solid, 43% yield. m.p. 227~229 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.59~8.52 (m, 1H), 8.42~8.33 (m, 2H), 8.21 (d, J=7.1 Hz, 1H), 7.95~7.89 (m, 2H), 7.88~7.82 (m, 1H), 7.82~7.74 (m, 2H), 7.62~7.53 (m, 3H), 2.44 (tt, J=8.0, 4.8 Hz, 1H), 1.32~1.16 (m, 3H), 0.95~0.82 (m, 2H); 13C NMR (100 MHz, CDCl3) δ: 161.3, 148.3, 147.2, 141.9, 135.4, 132.9, 132.4, 131.2, 130.2, 129.8, 129.1, 128.9, 128.8, 128.0, 125.3, 124.5, 123.3, 123.0, 119.6, 33.0, 5.7; HRMS (ESI) calcd for C24H18NO2S [M+H]+ 384.1053, found 384.1050.

    Supporting Information    1H NMR and 13C NMR spectra of compounds 3aa~3aw. The Supporting Information is available free of charge via the Internet at http://sioc-journal.cn.


    Dedicated to the 40th anniversary of Chinese Journal of Organic Chemistry.
    1. [1]

      (a) Günes, H. S.; Gözler, B. Fitoterapia 2001, 72, 875.
      (b) Wang, X.-L.; Liu, B.-R.; Chen, C.-K.; Wang, J.-R.; Lee, S.-S. Fitoterapia 2011, 82, 793.
      (c) Belkis, G.; Alan, J. F.; Maurice, S. J. Nat. Prod. 1990, 53, 675.
      (d) Fajardo, V.; Araya, M.; Cuadra, P.; Oyarzun, A.; Gallardo, A.; Cueto, M.; Joseph-Nathan, P. J. Nat. Prod. 2009, 72, 1355.
      (e) Honda, T.; Shigehisa, H. Org. Lett. 2006, 8, 657.
      (f) Khunnawutmanotham, N.; Sahakitpichan, P.; Chimnoi, N.; Techasakul, S. Eur. J. Org. Chem. 2015, 28, 6324.

    2. [2]

      Párraga, J.; Galán, A.; Sanz, M. J.; Cabedo, N.; Cortes, D. Eur. J. Med. Chem. 2015, 90, 101. doi: 10.1016/j.ejmech.2014.11.009

    3. [3]

      (a) Leardini, R.; Nanni, D.; Tundo, A.; Zanardi, G. Tetrahedron Lett. 1998, 39, 2441.
      (b) Chowdhury, S.; Zhao, B.; Snieckus, V. Polycyclic Aromat. Compd. 1995, 5, 27.
      (c) Wu, Y.; Wong, S. M.; Mao, F.; Chan, T. L.; Kwong, F. Y. Org. Lett. 2012, 14, 5306.

    4. [4]

      (a) Sciabola, S.; Carosati, E.; Baroni, M.; Mannhol, R. J. Med. Chem. 2005, 48, 3756.
      (b) Tfelt-Hansen, P.; De Vries, P.; Saxena, P. R. Drugs 2000, 60, 1259.
      (c) Artico, M.; Silvestri, R.; Massa, S.; Loi, A. G.; Corrias, S.; Piras, G.; Colla, P. L. J. Med. Chem. 1996, 39, 522.
      (d) Harrak, Y.; Casula, G.; Basset, J.; Rosell, G.; Plescia, S.; Raffa, D.; Cusimano, M. G.; Pouplana, R.; Pujol, M. D. J. Med. Chem. 2010, 53, 6560.
      (e) Emmett, E. J.; Hayter, B. R.; Willis, M. C. Angew. Chem., Int. Ed. 2014, 53, 10204.

    5. [5]

      (a) Wu, Z.; Song, H.; Cui, X.; Pi, C.; Du, W.; Wu, Y. Org. Lett. 2013, 15, 1270.
      (b) Mi, X.; Kong, Y.; Zhang, J.; Pi, C.; Cui, X. Chin. Chem. Lett. 2019, 30, 2295.
      (c) Zhang, Z.; Yan, J.; Ma, D.; Sun, J. Chin. Chem. Lett. 2019, 30, 1509.
      (d) Peng, S.; Song, Y.-X.; He, J.-Y.; Tang, S.-S.; Tan, J.-X.; Cao, Z.; He, W.-M. Chin. Chem. Lett. 2019, 30, 2287.
      (e) Yu, H.; Pi, C.; Wang, Y.; Cui, X.; Wu, Y. Chin. J. Org. Chem. 2018, 38, 124(in Chinese).
      (余海洋, 皮超, 王勇, 崔秀灵, 吴养洁, 有机化学, 2018, 38, 124.)
      (f) Shi, Z.-J.; Wang, L.-H.; Cui, X. Chin. J. Org. Chem. 2019, 39, 1596(in Chinese).
      (施兆江, 王连会, 崔秀灵, 有机化学, 2019, 39, 1596.)
      (g) Xie, L.-Y.; Fang, T.-G.; Tan, J.-X.; Zhang, B.; Cao, Z.; Yang, L.-H.; He, W.-M. Green Chem. 2019, 21, 3858.
      (h) Xie, L.-Y.; Peng, S.; Tan, J.-X.; Sun, R.-X.; Yu, X.; Dai, N.-N.; He, W.-M. ACS Sustainable Chem. Eng. 2018, 6, 16976.
      (i) Xie, L.-Y.; Li, Y.-J.; Qu, J.; Duan, Y.; Hu, J.; Liu, K.-J.; Cao, Z.; He, W.-M. Green Chem. 2017, 19, 5642.
      (j) Cao, Z.; Zhu, Q.; Lin, Y.-W.; He, W.-M. Chin. Chem. Lett. 2019, 30, 2132.

    6. [6]

      (a) Shaabani, A.; Mirzaei, P.; Naderi, S.; Lee, D. G. Tetrahedron 2004, 60, 11415.
      (b) Kozak, J. A.; Dake, G. R. Angew. Chem., Int. Ed. 2008, 47, 4221.
      (c) Pritzius, A. B.; Breit, B. Angew. Chem., Int. Ed. 2015, 54, 3121.

    7. [7]

      (a) Olah, G. A.; Kobayashi, S.; Nishimura, J. J. Am. Chem. Soc. 1973, 95, 564.
      (b) Répichet, S.; Le Roux, C.; Hernandez, P.; Dubac, J.; Desmurs, J.-R. J. Org. Chem. 1999, 64, 6479.
      (c) Cacchi, S.; Fabrizi, G.; Goggiamani, A.; Parisi, L. M. Org. Lett. 2002, 4, 4719.
      (d) Baskin, J. M.; Wang, Z. Org. Lett. 2002, 4, 4423.

    8. [8]

      (a) Xu, Y.; Zhao, J.; Tang, X.; Wu, W.; Jiang, H. Adv. Synth. Catal. 2004, 356, 2029.
      (b) Tang, X.; Huang, L.; Xu, Y.; Yang, J.; Wu, W.; Jiang, H. Angew. Chem., Int. Ed. 2014, 53, 4205.
      (c) Xu, Y.; Tang, X.; Hu, W.; Wu, W.; Jiang, H. Green Chem. 2014, 16, 3720.
      (d) Wu, W.-Q.; Yi, S.; Yu, Y.; Huang, W.; Jiang, H.-F. J. Org. Chem. 2017, 82, 1224.

    9. [9]

      (a) Nicolaou, K. C.; Edmonds, D. J.; Bulger, P. G. Angew. Chem., Int. Ed. 2006, 45, 7134.
      (b) Grondal, C.; Jeanty, M.; Enders, D. Nat. Chem. 2010, 2, 167.
      (c) Lu, L.-Q.; Chen, J.-R.; Xiao, W.-J. Acc. Chem. Res. 2012, 45, 1278.
      (d) Volla, C. M. R.; Atodiresei, I.; Rueping, M. Chem. Rev. 2014, 114, 2390.
      (e) Wang, Y.; Lu, H.; Xu, P.-F. Acc. Chem. Res. 2015, 48, 1832.
      (f) Xuan, J.; Studer, A. Chem. Soc. Rev. 2017, 46, 4329.
      (g) Zhang, Y.-L.; Sun, K.; Lv, Q.-Y.; Chen, X.-L.; Qu, L.-B.; Yu, B. Chin. Chem. Lett. 2019, 30, 1361.
      (h) Ren, L.-J.; Ran, M.-G.; He, J.-X.; Qian, Y.; Yao, Q.-L. Chin. J. Org. Chem. 2019, 39, 1583(in Chinese).
      (任林静, 冉茂刚, 何佳芯, 钱燕, 姚秋丽, 有机化学, 2019, 39, 1583.)

    10. [10]

      (a) Li, X.; Fang, X.; Zhuang, S.; Liu, P.; Sun, P. Org. Lett. 2017, 19, 3580.
      (b) Yu, Y.; Cai, Z.; Yuan, W.; Liu, P.; Sun, P. J. Org. Chem. 2017, 82, 8148.
      (c) Zhang, C.; Pi, J.; Chen, S.; Liu, P.; Sun, P. Org. Chem. Front. 2018, 5, 793.
      (d) Xu, P.; Zhu, Y.-M.; Wang, F.; Wang, S.-Y.; Ji, S.-J. Org. Lett. 2019, 21, 683.
      (e) Zheng, J.; Zhang, Y.; Wang, D.; Cui, S. Org. Lett. 2016, 18, 1768.
      (f) Wu, L.-J.; Yang, Y.; Song, R.-J.; Yu, J.-X.; Li, J.-H.; He, D.-L. Chem. Commun. 2018, 54, 1367.
      (g) Liu, X.; Wu, Z.; Zhang, Z.; Liu, P.; Sun, P. Org. Biomol. Chem. 2018, 16, 414.
      (h) Shang, J.-Q.; Wang, S.-S.; Fu, H.; Li, Y.; Yang, T.; Li, Y.-M. Org. Chem. Front. 2018, 5, 1945.

    11. [11]

      (a) Zhou, B.; Chen, W.; Yang, Y.; Yang, Y.; Deng, G.; Liang, Y. Org. Biomol. Chem. 2018, 16, 7959.
      (b) Xie, L.-Y.; Peng, S.; Liu, F.; Chen, G.-R.; Xia, W.; Yu, X.; He, W.-M. Org. Chem. Front. 2018, 5, 2604.
      (c) Wu, W.-Q.; Yi, S.-J.; Huang, W.; Luo, D.; Jiang, H.-F. Org. Lett. 2017, 19, 2825.
      (d) Wei, W.; Wen, J.-W.; Yang, D.-S.; Du, J.; You, J.-M.; Wang, H. Green Chem. 2014, 16, 2988.
      (e) Gao, M.; Li, Y.; Xie, L.; Chauvin, R.; Cui, X. Chem. Commun. 2016, 52, 2846.

    12. [12]

      Zhou, N.-N.; Wu, M.-X.; Zhang, M.; Zhou, X.-Q.; Zhou, W. Org. Biomol. Chem. 2020, 18, 1733. doi: 10.1039/D0OB00119H

  • Scheme 1  Control experiments

    Scheme 2  Proposed reaction mechanism

    Table 1.  Optimization of reaction conditionsa

    Entry Oxidant Solvent (V:V) Yiledb/%
    1 NH4S2O8 CH3CN/H2O (4:1) 41
    2 K2S2O8 CH3CN/H2O (4:1) 83
    3 Na2S2O8 CH3CN/H2O (4:1) 69
    4 TBHP CH3CN/H2O (4:1) Trace
    5 DTBP CH3CN/H2O (4:1) N.r
    6 TBPB CH3CN/H2O (4:1) Trace
    7 PhI(OAc)2 CH3CN/H2O (4:1) Trace
    8 PhI(TFA)2 CH3CN/H2O (4:1) 9
    9 Oxone CH3CN/H2O (4:1) 18
    10 K2S2O8 Actone/H2O (4:1) 36
    11 K2S2O8 DMSO/H2O (4:1) Trace
    12 K2S2O8 DCE/H2O (4:1) Trace
    13 K2S2O8 CH3CN/H2O (1:1) 56
    14 K2S2O8 CH3CN/H2O (3:1) 75
    15 K2S2O8 CH3CN/H2O (5:1) 69
    16 K2S2O8 CH3CN/H2O (6:1) 52
    17 K2S2O8 CH3CN/H2O (9:1) 49
    18 K2S2O8 CH3CN 39
    19 K2S2O8 H2O Trace
    20c K2S2O8 CH3CN/H2O (4:1) 54
    21d K2S2O8 CH3CN/H2O (4:1) 42
    22e K2S2O8 CH3CN/H2O (4:1) 60
    23f K2S2O8 CH3CN/H2O (4:1) 78
    24 CH3CN/H2O (4:1) N.r
    a Reaction conditions: 1a (0.2 mmol), 2a (0.5 mmol), oxidant (0.7 mmol), solvent (3 mL), 80 ℃, 12 h, N2 atmosphere. N.r.=no reaction; b Isolated yield; c K2S2O8 (0.40 mmol); d K2S2O8 (0.80 mmol); e 60 ℃; f 100 ℃.
    下载: 导出CSV

    Table 2.  Scope of substratesa, b

    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  3
  • 文章访问数:  2003
  • HTML全文浏览量:  205
文章相关
  • 发布日期:  2020-11-25
  • 收稿日期:  2020-07-01
  • 修回日期:  2020-07-30
  • 网络出版日期:  2020-08-11
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章