铂催化氧杂二环烯烃与芳基磺酰肼的顺式-立体控制开环反应
English
Platinum-Catalyzed syn-Stereocontrolled Ring-Opening of Oxabicyclic Alkenes with Arylsulfonyl Hydrazides
-
Key words:
- platinum catalyst
- / ring-opening
- / oxabicyclic alkenes
- / arylsulfonyl hydrazides
- / nucleophiles
-
1. Introduction
The transition metal-catalyzed ring-opening reaction of oxa- and aza-bicyclic alkenes is a useful method to construct carbon-carbon and carbon-heteroatom bonds.[1] It is well known that 1, 2-dihydronaphthalene skeleton was found in a wide range of naturally occurring compounds which exhibited a variety of biological activities.[2] In addition, this transformation is valuable because multiple stereocenters can be established in a single step. In this regard, numerous metal catalysts, including Ir, [3] Ni, [4] Pd, [5] Cu, [6] Rh, [7] Pt, [8] Ru, [9] Fe, [10] and so forth, [11] have been investigated for the ring-opening reaction of heterobicyclic alkenes with various carbon and heteroatom nucleophiles.
Since the seminal work of Lautens, [1b, 1d] many research groups have been working on the transition metal-catalyzed asymmetric ring-opening (ARO) reactions of oxa(aza)bicyclic alkenes and make some considerable progress. Our group has long-term interest in the ARO reactions of oxa- and aza-bicyclic alkenes with various nucleophiles. The nucleophiles, such as amines, [3a, 3c, 3e, 12] phenols, [8a, 13] alcohols, [3f, 14] carboxylic acids, [3b, 3d] Grignard reagents[15] and organic zincs[16] have been found as feasible nucleophiles used in the ring-opening reaction. In recent years, arylboronic acids and arylsulfinate salts, because of their stability and low toxicity, also have been employed as effective carbanion nucleophiles in ring-opening reactions of oxabicyclic alkenes to afford the corresponding product 2-aryl-1, 2-dihydronaphthalen-1-ols in high yields. For instance, our group demonstrated platinum-catalyzed ring-opening of oxabenzonorbornadienes with sodium sulfinates[17] and arylboronic acids[18], which generated cis-1, 2-ring-opening products in high yields.
Arylsulfonyl hydrazides are generally stable in the air. They can be prepared in one step from readily available arylsulfonyl chlorides and hydrazine hydrates, [19] and increasing attention has recently been paid to the construction of C—C bonds through the extrusion of N2 and SO2 in situ.[20] Recently, our group[21] has reported palladium-catalyzed syn-stereocontrolled ring-opening reactions of oxabenzonorbornadienes with arylsulfonyl hydrazides, affording the desired products in good to excellent yields (up to 96%) under an air atmosphere. To the best of our knowledge, there is no literature reported about platinum-catalyzed syn-stereocontrolled ring-opening of oxabicyclic alkenes with arylsulfonyl hydrazides till now. Our continuous interest in this type of reactions promotes us to further explore and expand the possibility of this reaction in the presence of platinum catalyst. Herein, we reported platinum-catalyzed ring-opening of oxabicyclic alkenes with arylsulfonyl hydrazides to afford the corresponding products of cis-2-aryl-1, 2-dihydronapthalene-1-ols and 2-aryl-napthalenes in good to excellent yields.
2. Results and discussion
Oxabenzonorbornadiene (1a) and phenylsulfonyl hydrazide (2a) were initially chosen as model substrates to identify the feasibility of our process. When 2a reacted with 1a in 1, 2-dichloroethane (DCE) at 80 ℃ in the presence of PtCl2 (10 mol%), PPh3 (20 mol%) and Cu(OAc)2 (3 equiv.), the desired ring-opening product 3aa was obtained in 62% yield after 4 h (Table 1, Entry 1). Other two platinum catalysts were then screened, and PtCl2 was the best one (Entries 1~3). It was worth mentioning that the ring-opening reaction did not take place in the absence of PtCl2 (Entry 4). When the catalyst loading was 5 mol% and 20 mol%, the ring-opening product 3aa could be obtained with yields of 39% and 60%, respectively (Entries 5, 6). In order to further improve the yield of 3aa, series achiral phosphine ligands, including 1, 3-bis(diphenylphosphino)-propane (DPPP), 1, 2-bis(diphenylphosphino)ethane (DPPE) and 1, 1'-bis(diphenylphosphino)ferrocene (DPPF) were examined for the ring-opening reaction (Entries 7~9) (yields up to 62%). Moreover, chiral phosphine ligands, including (S)-SEGPHOS, (R, S)-PPF-tBu2, (R)-BINAP, (S)-DM-SEGPHOS, (4S, 5S)-DIOP and (2S, 4S)-BDPP were also tested. Unfortunately, the product 3aa was obtained only in moderate yield and low enantioselectivity (up to 53% yield and 43% ee) (Entries 10~15). Therefore, among the ligands screened, achiral ligand PPh3 was the most effective in terms of yield (Entries 1~15). Next, several cupric salts, such as CuO, CuCl2 and Cu(acac)2 were also investigated. Unfortunately, all of them gave low yields (Entries 16~18). The effect of solvent was then examined (Entries 1, 19~21). The results indicated that solvents played an important role in the ring-opening reaction. The solvent DCE was the optimal solvent. Furthermore, the impact of reaction temperature on the reaction efficiency was investigated (Entries 22~23). When the reaction temperature was 60 or 100 ℃, the product 3aa was obtained in moderate yield (53% and 48%, respectively). At last, the impact of the amount of Cu(OAc)2 on the reaction was investigated (Entries 24~26). The results indicated that 1.5 equiv. of Cu(OAc)2 gave the best yield (82%). It should be noted that in the absence of Cu(OAc)2, none of the targeted product was observed (Entry 27). Meanwhile, product 3aa could be obtained in 20% yield in the absence of PPh3 (Entry 28). Therefore, the optimal reaction conditions were: 10 mol% PtCl2, 20 mol% PPh3, 1.5 equiv. of Cu(OAc)2 in DCE at 80 ℃ for 4 h.
Table 1
Entry Pt catalyst (mol%) Ligand (mol%) Additive (equiv.) Solvent Yieldb/% eec/% 1 PtCl2 (10) PPh3 (20) Cu(OAc)2 (3) DCE 62 2 Pt(COD)Cl2 (10) PPh3 (20) Cu(OAc)2 (3) DCE 58 3 Pt(acac)2 (10) PPh3 (20) Cu(OAc)2 (3) DCE 36 4 — PPh3 (20) Cu(OAc)2 (3) DCE 0 5 PtCl2 (5) PPh3 (10) Cu(OAc)2 (3) DCE 39 6 PtCl2 (20) PPh3 (40) Cu(OAc)2 (3) DCE 60 7 PtCl2 (10) DPPP Cu(OAc)2 (3) DCE Trace 8 PtCl2 (10) DPPE Cu(OAc)2 (3) DCE Trace 9 PtCl2 (10) DPPF Cu(OAc)2 (3) DCE 41 10 PtCl2 (10) (S)-SEGPHOS Cu(OAc)2 (3) DCE 53 36 11 PtCl2 (10) (R, S)-PPF-tBu2 Cu(OAc)2 (3) DCE 336 320 12 PtCl2 (10) (R)-BINAP Cu(OAc)2 (3) DCE 348 310 13 PtCl2 (10) (S)-DM-SEGPHOS Cu(OAc)2 (3) DCE 350 343 14 PtCl2 (10) (4S, 5S)-DIOP Cu(OAc)2 (3) DCE 310 35 15 PtCl2 (10) (2S, 4S)-BDPP Cu(OAc)2 (3) DCE 38 35 16 PtCl2 (10) PPh3 CuO (3) DCE 3Trace 17 PtCl2 (10) PPh3 CuCl2 (3) DCE 323 18 PtCl2 (10) PPh3 Cu(acac)2 (3) DCE 352 19 PtCl2 (10) PPh3 Cu(OAc)2 (3) 1, 4-Dioxane 346 20 PtCl2 (10) PPh3 Cu(OAc)2 (3) THF 351 21 PtCl2 (10) PPh3 Cu(OAc)2 (3) DMF 337 22d PtCl2 (10) PPh3 Cu(OAc)2 (3) DCE 353 23e PtCl2 (10) PPh3 Cu(OAc)2 (3) DCE 348 24 PtCl2 (10) PPh3 Cu(OAc)2 (2) DCE 373 25 PtCl2 (10) PPh3 Cu(OAc)2 (1.5) DCE 382 26 PtCl2 (10) PPh3 Cu(OAc)2 (1) DCE 365 27 PtCl2 (10) PPh3 — DCE 3n.r. 28 PtCl2 (10) — Cu(OAc)2 (1.5) DCE 320 a The reaction was carried out with Pt catalyst, ligand, additive, 1a (0.1 mmol, 1.0 equiv.) and 2a (0.2 mmol, 2.0 equiv.) in the corresponding solvent at 80 ℃ under an air atmosphere for 4 h. bIsolated yield. c Determined by HPLC with a Chiralcel OD-H column. d60 ℃. e 100 ℃. Next, attention was paid to the ring-opening reaction of 1a with a variety of arylsulfonyl hydrazides under the optimized reaction conditions (Table 2). In general, all of arylsulfonyl hydrazides 2a~2h as nucleophiles could react smoothly with 1a and provided the corresponding targeted products 3aa~3ah in moderate to good yields (52%~85%). The substituents attached on arylsulfonyl hydrazides had obvious electronic effect on the ring-opening reaction. Compared with arylsulfonyl hydrazides with strong electron donating groups, the ring opening reaction of arylsulfonylhydrazides with electron withdrawing groups on benzene ring was better. Arylsulfonyl hydrazides 2e~2g bearing electron-withdrawing groups could react smoothly with 1a and afforded the corresponding products 3ae~3ag in good yields (78%, 85% and 77%, respectively). Arylsulfonyl hydrazides 2b~2c bearing electron-donating groups could react with 1a and afforded the corresponding products 3ab~3ac in moderate yields (68% and 66%, respectively). 2-Chlorobenzenesulfonyl hydrazide (2d) could react with 1a and afforded ring-opening product 3ad in 60% yield. In addition to these, when 2, 4, 6-trimethyl-benzenesulfonyl hydrazide (2h) as nucleophile was employed in the reaction, the desired product 3ah was obtained in 52% yield, which probably due to steric hindrance.
Table 2
Entry Ar Product Yieldb/% 1 C6H5 3aa 82 2 4-CH3C6H4 3ab 68 3 4-CH3OC6H4 3ac 66 4 2-ClC6H4 3ad 60 5 4-ClC6H4 3ae 78 6 4-FC6H4 3af 85 7 4-O2NC6H4 3ag 77 8 2, 4, 6-(CH3)3C6H2 3ah 52 a Conditions: 1a (0.1 mmol, 14.4 mg), 2 (0.2 mmol), Cu(OAc)2 (1.5 equiv.), PtCl2 (10 mol%), PPh3 (20 mol%), DCE (2 mL), 80 ℃. bIsolated yield. The scope of this ring-opening reaction was further expanded to various oxabenzonorbornadienes 1b~1f. The results showed that the reaction of various oxabenzonorbornadienes with arylsulfonyl hydrazides proceeded smoothly to afford corresponding target product in moderate to excellent yields (Table 3). The ring-opening reactions of oxabenzonorbornadienes 1d~1f with various arylsulfonyl hydrazides proceeded smoothly to afford the expected products with good to excellent yields (up to 89%). Oxabenzonorbornadienes 1d and 1f bearing bromine and fluorine groups showed better reaction efficiency than 1e bearing methyl group. Besides, bulkier substrate 1g afforded product 3ga in 52% yield, indicating that steric hindrance on substrate 1g had a negative impact on this ring-opening transformation. Interestingly, the corresponding products 2-arylnaphthalenes 4ba~4cb could be obtained in good yields (up to 78%) rather than ring-opening products 3 when methoxy substituted oxabenzonorbornadienes 1b~1c were used to react with various arylsulfonyl hydrazides.
Table 3
Entry 1 Ar 3 Yieldb/% of 3 4 Yieldb/% of 4 1 1b C6H5 4ba 68 2 1b 4-CH3C6H4 4bb 66 3 1b 4-FC6H4 4bf 78 4 1c C6H5 4ca 70 5 1c 4-CH3C6H4 4cb 72 6 1d C6H5 3da 83 7 1d 4-CH3C6H4 3db 80 8 1d 4-FC6H4 3df 88 9 1e C6H5 3ea 71 10 1e 4-ClC6H4 3ee 72 11 1e 4-O2NC6H4 3eg 70 12 1f C6H5 3fa 87 13 1f 4-CH3C6H4 3fb 80 14 1f 4-FC6H4 3ff 89 15 1g C6H5 3ga 52 aConditions: 1 (0.1 mmol, 14.4 mg), 2 (0.2 mmol), Cu(OAc)2 (1.5 equiv.), PtCl2 (10 mol%), PPh3 (20 mol%), DCE (2 mL), 80 ℃. bIsolated yield. The cis-1, 2-configuration of compound 3db was undoubtedly confirmed by X-ray single crystal diffraction analysis (Figure 1). The single crystal was obtained by diffusion method from a mixed solvent of petroleum ether and ethyl acetate.
Figure 1
To further evaluate the reaction effect on the scale of preparation, scaled-up reaction was then conducted under the current standard conditions. The desired product 3aa was obtained in 68% yield (0.302 g), indicating the application of this method in synthetic chemistry (Scheme 1).
Scheme 1
According to our experimental results and the general mechanism of desulfurization coupling reactions, [20] a plausible mechanism for this ring-opening reaction is proposed (Scheme 2). Initially, ligand PPh3 reacts with PtCl2 to give the active catalyst Pt(PPh3)2Cl2. Then Pt(PPh3)2Cl2 is treated with arylsulfonyl hydrazide 2 to result in complex A, which undergoes β-hydride elimination to give sulfonyl diazene B and release Pt(PPh3)2. Pt(0)(PPh3)2 is then oxidized by Cu(OAc)2 or O2 from air to regenerate the active catalyst Pt(PPh3)2Cl2[Pt(PPh3)2X2]. Meanwhile, one of chlorine atom of Pt(PPh3)2Cl2 is replaced by sulfonyl diazene B to give intermediate C. Intermediate C releases nitrogen and sulfur dioxide, affording arylplatinum D, which then undergoes exo-1, 2-addition with substrate 1a to yield intermediate E. β-Oxygen atom elimination of intermediate E occurs and provides new Pt intermediate F. Protonation of the intermediate F affords product 3 and a Pt(PPh3)2. Further dehydration of 3 gives 2-arylnaphthalene 4.
Scheme 2
3. Conclusions
In summary, an efficient platinum-catalyzed syn-stereocontrolled ring-opening of oxabicyclic alkenes with arylsulfonyl hydrazides via the release of N2 and SO2 in situ under mild conditions has been developed. This synthetic protocol provides a useful tool for the construction of cis-2-aryl-1, 2-dihydronaphthalen-1-ols 3 and 2-aryl-naphthalenes 4 in good to excellent yields. The different substituents of oxabicyclic alkenes play a crucial role in the control of targeted product. The electron-withdrawing groups in the substrate are advantageous for the ring-opening reaction, and the dehydrated compounds are more readily available when oxabenzonorbornadienes bearing a strong donor group were used. Further studies toward the evaluating of the biological and pharmaceutical activities of these target compounds are going on in our laboratory.
4. Experimental section
4.1 General information
All 1H NMR and 13C NMR spectra were recorded at 600 and 150 MHz respectively, using CDCl3/CD3OD as the solvent. 19F NMR spectra were recorded at 564 MHz at 25 ℃ in CDCl3/ CD3OD. The chemical shifts of all 1H NMR and 13C NMR spectra were referenced to the residual signal of CDCl3 (δ 7.26 for the 1H NMR spectra and δ 77.00 for the 13C NMR spectra) or CD3OD (δ 3.31 for the 1H NMR spectra and δ 49.00 for the 13C NMR spectra). Enantiomeric excesses were determined with a Chiralcel OD-H column eluting with a mixture of hexane and propan-2-ol (V:V=95:5, 1.0 mL/min, λ=254 nm). Infrared spectra (IR) were obtained with thin film samples on a PerkinElmer Spectrum Two spectrometer. HRMS were obtained from mass spectrometer (ESI-TOF). Melting points were recorded on an electrothermal digital melting point apparatus and were uncorrected. The crystal structure determination was carried out by an X-ray diffraction apparatus. Unless otherwise stated, all starting materials, catalysts, and solvents were commercially available and were used as purchased. Anhydrous solvent 1, 4-dioxane, tetrahydrofuran (THF) and N, N-dimethylformamide (DMF) were used without any pretreatment. Substrates of oxabenzonorbornadienes (1a~1g) were synthesized according to the known procedures.[3c] Flash column chromatography was performed using the indicated solvent system on Qingdao-Haiyang silica gel (200~300 mesh).
4.2 General procedure for the synthesis of products 3 and 4
All experiments were carried out under air. PtCl2 (2.7 mg, 10 mol%), PPh3 (5.2 mg, 20 mol%), oxabicyclic alkenes 1 (0.1 mmol), arylsulfonyl hydrazides 2 (2 equiv., 0.2 mmol), Cu(OAc)2 (27.2 mg, 0.15 mmol) and DCE (2.0 mL) were simultaneously added to a 10 mL round-bottomed flask. The mixture was stirred at 80 ℃ in oil bath for 4 h. After cooling to room temperature, 10 mL of water was added to the reaction mixture, which then was extracted by ethyl acetate (10 mL×3). The organic layers were combined and dried with anhydrous MgSO4, and then filtered. The filtrate was concentrated under vacuum, and the resulting residue was purified by column chromatography on silica gel (200~300 mesh) using ethyl acetate/petroleum ether or ethyl acetate/hexane to obtain the desired products 3 and 4.
(1S*, 2R*)-2-Phenyl-1, 2-dihydronaphthalen-1-ol (3aa): Colorless oil (18.3 mg, 82%). 1H NMR (600 MHz, CDCl3) δ: 7.36~7.27 (m, 6H), 7.28~7.26 (m, 2H), 7.19~7.16 (m, 1H), 6.71 (dd, J=9.6, 2.0 Hz, 1H), 6.13 (dd, J=9.6, 4.0 Hz, 1H), 4.93 (d, J=5.9 Hz, 1H), 3.88 (ddd, J=6.0, 4.0, 2.1 Hz, 1H), 1.56 (s, 1H); 13C NMR (150 MHz, CDCl3) δ: 137.8, 136.1, 132.7, 129.7, 129.3, 128.7, 128.4, 128.3, 128.0, 127.5, 126.7, 126.4, 71.3, 47.4; IR (film) v: 3445, 2925, 1495, 1449, 1128, 765, 691 cm-1; HRMS (ESI-TOF) calcd for C16H11O [M-3H]- 219.0810, found 219.0810.
(1S*, 2R*)-2-(p-Tolyl)-1, 2-dihydronaphthalen-1-ol (3ab): Colorless oil (16.1 mg, 68%). 1H NMR (600 MHz, CDCl3) δ: 7.34 (d, J=7.2 Hz, 1H), 7.30~7.22 (m, 2H), 7.17~7.10 (m, 5H), 6.68 (dd, J=9.6, 1.9 Hz, 1H), 6.11 (dd, J=9.6, 4.1 Hz, 1H), 4.91 (t, J=6.6 Hz, 1H), 3.83 (ddd, J=6.1, 4.2, 2.0 Hz, 1H), 2.31 (s, 3H), 1.49 (d, J=7.8 Hz, 1H); 13C NMR (150 MHz, CDCl3) δ: 137.1, 136.2, 134.3, 132.7, 129.9, 129.4, 129.1, 128.2, 128.1, 127.9, 126.6, 126.3, 71.3, 46.9, 21.0; IR (film) v: 3437, 2920, 1512, 1451, 1374, 1184, 1071, 786 cm-1; HRMS (ESI-TOF) calcd for C17H13O [M-3H]- 233.0966, found 233.0970.
(1S*, 2R*)-2-(4-Methoxyphenyl)-1, 2-dihydronaphthalen-1-ol (3ac): Colorless oil (16.7 mg, 66%). 1H NMR (600 MHz, CDCl3) δ: 7.35 (dd, J=7.3, 0.5 Hz, 1H), 7.29~7.23 (m, 2H), 7.18~7.14 (m, 3H), 6.84 (d, J=8.7 Hz, 2H), 6.68 (dd, J=9.6, 1.9 Hz, 1H), 6.10 (dd, J=9.6, 4.3 Hz, 1H), 4.93 (t, J=5.9 Hz, 1H), 3.81 (ddd, J=6.2, 4.3, 2.0 Hz, 1H), 3.77 (s, 3H), 1.49 (d, J=6.9 Hz, 1H); 13C NMR (150 MHz, CDCl3) δ: 159.0, 136.2, 132.7, 130.3, 130.0, 129.1, 128.2, 128.0, 128.0, 126.5, 126.3, 114.1, 71.3, 55.2, 46.4; IR (film) v: 3448, 2925, 1601, 1512, 1242, 1174, 1025, 796 cm-1; HRMS (ESI-TOF) calcd for C17H13O2 [M-3H]- 249.0916, found 249.0916.
(1S*, 2R*)-2-(2-Chlorophenyl)-1, 2-dihydronaphthalen-1-ol (3ad): Colorless oil (15.4 mg, 60%). 1H NMR (600 MHz, CDCl3) δ: 7.45 (dd, J=7.5, 1.8 Hz, 1H), 7.42~7.34 (m, 3H), 7.31~7.22 (m, 4H), 6.76 (dd, J=9.6, 2.7 Hz, 1H), 6.10~6.04 (m, 1H), 4.91 (d, J=5.0 Hz, 1H), 4.51 (dt, J=5.3, 2.9 Hz, 1H), 1.64 (s, 1H); 13C NMR (150 MHz, CDCl3) δ: 136.9, 135.2, 134.1, 132.1, 131.0, 129.5, 129.0, 128.8, 128.4, 128.3, 128.0, 127.9, 126.9, 126.7, 69.1, 44.0; IR (film) v: 3414, 2923, 1469, 1456, 1257, 1071, 1031, 808 cm-1; HRMS (ESI-TOF) calcd for C16H10ClO [M-3H]- 253.0418, found 253.0421.
(1S*, 2R*)-2-(4-Chlorophenyl)-1, 2-dihydronaphthalen-1-ol (3ae): White solid (20.0 mg, 78%). m.p. 113.0~114.0 ℃; 1H NMR (600 MHz, CDCl3) δ: 7.33~7.24 (m, 5H), 7.20~7.14 (m, 3H), 6.70 (dd, J=9.6, 2.0 Hz, 1H), 6.06 (dd, J=9.6, 4.1 Hz, 1H), 4.89 (d, J=6.0 Hz, 1H), 3.81 (ddd, J=6.0, 4.1, 2.0 Hz, 1H), 1.55 (s, 1H); 13C NMR (150 MHz, CDCl3) δ: 136.3, 135.9, 133.1, 132.4, 130.6, 129.2, 128.6, 128.4, 128.4, 128.2, 126.5, 126.4, 71.2, 46.7; IR (film) v: 3424, 2909, 1484, 1413, 1189, 1089, 1012, 801 cm-1; HRMS (ESI-TOF) calcd for C16H10ClO [M-3H]- 253.0418, found 253.0422.
(1S*, 2R*)-2-(4-Fluorophenyl)-1, 2-dihydronaphthalen-1-ol (3af): White solid (20.4 mg, 85%). m.p. 100.0~101.0 ℃; 1H NMR (600 MHz, CDCl3) δ: 7.34~7.16 (m, 6H), 7.01~6.93 (m, 2H), 6.70 (dd, J=9.6, 2.0 Hz, 1H), 6.08 (dd, J=9.6, 4.1 Hz, 1H), 4.91 (t, J=6.8 Hz, 1H), 3.84 (ddd, J=6.1, 4.2, 2.0 Hz, 1H), 1.46 (d, J=8.1 Hz, 1H); 13C NMR (150 MHz, CDCl3) δ: 162.2 (d, J=240.0 Hz), 136.0, 133.3 (d, J=3.2 Hz), 132.5, 130.8 (d, J=8.0 Hz), 129.6, 128.4, 128.3, 128.1, 126.5, 126.4, 115.4 (d, J=21.3 Hz), 71.2, 46.5; 19F NMR (564 MHz, CDCl3) δ: -115.4 (s); IR (film) v: 3420, 2922, 1484, 1456, 1410, 1086, 1012, 832 cm-1; HRMS (ESI-TOF) calcd for C16H10FO [M-3H]- 237.0713, found 237.0715.
(1S*, 2R*)-2-(4-Nitrophenyl)-1, 2-dihydronaphthalen-1-ol (3ag): Pale-yellow solid (20.6 mg, 77%). m.p. 122.3~123.6 ℃; 1H NMR (600 MHz, CDCl3) δ: 8.15 (d, J=8.7 Hz, 2H), 7.44 (d, J=8.6 Hz, 2H), 7.33 (dd, J=11.5, 4.1 Hz, 2H), 7.29~7.27 (m, 1H), 7.21 (d, J=7.3 Hz, 1H), 6.77 (dd, J=9.6, 2.0 Hz, 1H), 6.08 (dd, J=9.6, 3.8 Hz, 1H), 4.93 (s, 1H), 3.95 (t, J=5.7 Hz, 1H), 1.60 (s, 1H); 13C NMR (150 MHz, CDCl3) δ: 147.2, 146.5, 135.6, 132.1, 130.2, 129.0, 128.8, 128.5, 128.1, 126.8, 126.7, 123.6, 71.2, 47.3; IR (film) v: 3417, 2922, 1591, 1513, 1339, 1107, 1071, 857 cm-1; HRMS (ESI-TOF) calcd for C16H10NO3 [M-3H]- 264.0658, found 264.0658.
(1S*, 2R*)-2-Mesityl-1, 2-dihydronaphthalen-1-ol (3ah): Colorless oil (13.8 mg, 52%). 1H NMR (600 MHz, CD3OD) δ: 7.36~7.31 (m, 2H), 7.26~7.19 (m, 2H), 6.87 (s, 2H), 6.61 (dd, J=9.6, 3.3 Hz, 1H), 6.16 (d, J=9.6 Hz, 1H), 4.69 (d, J=4.9 Hz, 1H), 4.14~4.10 (m, 1H), 2.47 (s, 3H), 2.33 (s, 3H), 2.25 (s, 3H); 13C NMR (150 MHz, CD3OD) δ: 140.4, 137.7, 137.3, 136.7, 135.1, 134.3, 133.5, 131.8, 130.1, 129.8, 129.6, 128.1, 127.5, 125.2, 71.1, 44.8, 22.0, 21.1, 20.9; IR (film) v: 3420, 2919, 1520, 1485, 1453, 1079, 812, 761 cm-1; HRMS (ESI-TOF) calcd for C19H17O [M-3H]- 261.1279, found 261.1277.
1, 4-Dimethoxy-6-phenylnaphthalene (4ba): Colorless oil (17.9 mg, 68%). 1H NMR (600 MHz, CDCl3) δ: 8.44 (d, J=1.7 Hz, 1H), 8.27 (d, J=8.7 Hz, 1H), 7.78~7.74 (m, 3H), 7.46 (dd, J=10.6, 4.8 Hz, 2H), 7.35 (dt, J=8.4, 1.1 Hz, 1H), 6.70~6.66 (m, 2H), 3.95 (d, J=1.9 Hz, 6H); 13C NMR (150 MHz, CDCl3) δ: 149.7, 149.4, 141.3, 138.4, 128.7, 127.4, 127.2, 126.6, 125.4, 125.3, 122.4, 119.8, 103.6, 103.3, 55.7; IR (film) v: 2940, 1599, 1462, 1364, 1272, 1229, 1097, 755 cm-1; HRMS (ESI-TOF) calcd for C18H17O2 [M+H]+ 265.1229, found 265.1225.
1, 4-Dimethoxy-6-(p-tolyl)naphthalene (4bb): White solid (18.4 mg, 66%). m.p. 113.2~114.4 ℃; 1H NMR (600 MHz, CDCl3) δ: 8.42 (d, J=1.6 Hz, 1H), 8.25 (d, J=8.7 Hz, 1H), 7.75 (dd, J=8.7, 1.9 Hz, 1H), 7.65 (d, J=8.1 Hz, 2H), 7.26 (d, J=7.8 Hz, 2H), 6.67 (q, J=8.3 Hz, 2H), 3.95 (d, J=3.0 Hz, 6H), 2.40 (s, 3H); 13C NMR (150 MHz, CDCl3) δ: 149.7, 149.5, 138.4, 138.3, 137.0, 129.5, 127.2, 126.6, 125.2, 125.2, 122.4, 119.4, 103.6, 103.1, 55.7, 21.1; IR (film) v: 2937, 1594, 1520, 1459, 1359, 1267, 1232, 1104, 804 cm-1; HRMS (ESI-TOF) calcd for C19H19O2 [M+H]+ 279.1385, found 279.1380.
6-(4-Fluorophenyl)-1, 4-dimethoxynaphthalene (4bf): White solid (22.0 mg, 78%). m.p. 110.5~111.6 ℃; 1H NMR (600 MHz, CDCl3) δ: 8.37 (d, J=1.8 Hz, 1H), 8.25 (d, J=8.7 Hz, 1H), 7.71~7.68 (m, 3H), 7.14 (t, J=8.7 Hz, 2H), 6.70 (dd, J=14.6, 7.1 Hz, 2H), 3.96 (d, J=1.5 Hz, 6H); 13C NMR (150 MHz, CDCl3) δ: 162.5 (d, J=244.9 Hz), 149.2 (d, J=27.6 Hz), 137.4, 129.0 (d, J=8.06 Hz), 126.4 (d, J=33.1 Hz), 125.8, 125.3, 125.1, 122.6, 121.7, 119.7, 115.6 (d, J=21.6 Hz), 103.7, 103.2 (d, J=28.56 Hz), 55.7; 19F NMR (564 MHz, CDCl3) δ: -115.9 (s); IR (film) v: 2955, 1599, 1510, 1456, 1364, 1268, 1225, 1104, 827 cm-1; HRMS (ESI-TOF) calcd for C18H16FO2 [M+H]+ 283.1134, found 283.1130.
2, 3-Dimethoxy-6-phenylnaphthalene (4ca): White solid (18.5 mg, 70%). m.p. 121.0~122.0 ℃; 1H NMR (600 MHz, CDCl3) δ: 7.92 (d, J=1.3 Hz, 1H), 7.76 (d, J=8.4 Hz, 1H), 7.73~7.71 (m, 2H), 7.62 (dd, J=8.4, 1.8 Hz, 1H), 7.48 (t, J=7.7 Hz, 2H), 7.37 (t, J=7.5 Hz, 1H), 7.19 (s, 1H), 7.15 (s, 1H), 4.03 (d, J=1.8 Hz, 6H); 13C NMR (150 MHz, CDCl3) δ: 149.8, 149.5, 141.3, 136.9, 129.4, 128.7, 128.3, 127.2, 127.0, 126.8, 124.3, 123.8, 106.5, 106.0, 55.8; IR (film) v: 2928, 1601, 1495, 1252, 1235, 1166, 1128, 1003, 854 cm-1; HRMS (ESI-TOF) calcd for C18H17O2 [M+H]+ 265.1229, found 265.1225.
2, 3-Dimethoxy-6-(p-tolyl)naphthalene (4cb): White solid (20.0 mg, 72%). m.p. 136.2~137.3 ℃; 1H NMR (600 MHz, CDCl3) δ: 7.88 (d, J=1.4 Hz, 1H), 7.73 (d, J=8.4 Hz, 1H), 7.60~7.58 (m, 3H), 7.27 (d, J=7.8 Hz, 2H), 7.15 (d, J=22.1 Hz, 2H), 4.01 (d, J=2.2 Hz, 6H), 2.41 (s, 3H); 13C NMR (150 MHz, CDCl3) δ: 149.7, 149.4, 138.4, 136.9, 136.7, 129.5, 129.4, 128.2, 127.0, 126.7, 124.0, 123.8, 106.5, 106.1, 55.8, 21.1; IR (film) v: 2948, 1602, 1456, 1360, 1268, 1232, 1097, 812 cm-1; HRMS (ESI-TOF) calcd for C19H19O2 [M+H]+ 279.1385, found 279.1383.
(1S*, 2R*)-6, 7-Dibromo-2-phenyl-1, 2-dihydronaphthalen-1-ol (3da): Colorless oil (31.5 mg, 83%). 1H NMR (600 MHz, CD3OD) δ: 7.59 (s, 1H), 7.50 (s, 1H), 7.26~7.17 (m, 5H), 6.66 (dd, J=9.6, 1.7 Hz, 1H), 6.23 (dd, J=9.6, 4.6 Hz, 1H), 4.93 (d, J=6.4 Hz, 1H), 3.78 (ddd, J=6.4, 4.6, 1.8 Hz, 1H); 13C NMR (150 MHz, CD3OD) δ: 139.5, 138.9, 135.6, 134.0, 132.5, 131.8, 130.5, 129.1, 128.0, 127.0, 124.3, 123.9, 71.1, 48.2; IR (film) v: 3396, 2912, 1655, 1495, 1444, 1257, 1076, 890, 801 cm-1; HRMS (ESI-TOF) calcd for C16H9Br2O [M-3H]- 374.9021, found 374.9024.
(1S*, 2R*)-6, 7-Dibromo-2-(p-tolyl)-1, 2-dihydronaphthalen-1-ol (3db)(CCDC 1966855): Colorless oil (31.4 mg, 80%). 1H NMR (600 MHz, CDCl3) δ: 7.58 (s, 1H), 7.39 (s, 1H), 7.10 (d, J=7.9 Hz, 2H), 7.04 (d, J=8.0 Hz, 2H), 6.58 (dd, J=9.7, 1.0 Hz, 1H), 6.19 (dd, J=9.6, 4.9 Hz, 1H), 4.95 (s, 1H), 3.81~3.77 (m, 1H), 2.31 (s, 3H), 1.52 (s, 1H); 13C NMR (150 MHz, CDCl3) δ: 137.7, 137.3, 133.6, 132.2, 132.0, 131.4, 130.7, 129.6, 129.1, 126.2, 123.9, 123.5, 70.2, 46.2, 21.0; IR (film) v: 3417, 2915, 1510, 1464, 1260, 1107, 1072, 887 cm-1; HRMS (ESI-TOF) calcd for C17H11Br2O [M-3H]- 388.9177, found 388.9183.
(1S*, 2R*)-6, 7-Dibromo-2-(4-fluorophenyl)-1, 2-dihydronaphthalen-1-ol (3df): Colorless oil (35.0 mg, 88%). 1H NMR (600 MHz, CD3OD) δ: 7.59 (s, 1H), 7.50 (s, 1H), 7.20~7.14 (m, 2H), 6.98~6.94 (m, 2H), 6.66 (dd, J=9.6, 1.5 Hz, 1H), 6.21 (dd, J=9.6, 4.7 Hz, 1H), 4.92 (d, J=6.4 Hz, 1H), 3.81~3.77 (m, 1H); 13C NMR (150 MHz, CD3OD) δ: 163.5 (d, J=241.7 Hz), 139.4, 135.5, 134.6 (d, J=2.7 Hz), 133.8, 132.4, 132.2 (d, J=8.0 Hz), 131.8, 127.2, 124.3, 124.0, 115.7 (d, J=21.6 Hz), 71.0, 47.3; 19F NMR (564 MHz, CD3OD) δ: -118.4 (s); IR (film) v: 3414, 2915, 1596, 1510, 1464, 1219, 1155, 887 cm-1; HRMS (ESI-TOF) calcd for C16H8Br2FO [M-3H]- 392.8927, found 392.8932.
(1S*, 2R*)-6, 7-Dimethyl-2-phenyl-1, 2-dihydronaphthalen-1-ol (3ea): Pale-yellow oil (17.8 mg, 71%). 1H NMR (600 MHz, CD3OD) δ: 7.25 (dd, J=5.9, 1.2 Hz, 4H), 7.21~7.16 (m, 1H), 7.08 (s, 1H), 6.94 (s, 1H), 6.63 (dd, J=9.6, 2.2 Hz, 1H), 6.02 (dd, J=9.6, 3.8 Hz, 1H), 4.78 (d, J=5.7 Hz, 1H), 3.74 (ddd, J=5.9, 3.8, 2.3 Hz, 1H), 2.25 (d, J=5.9 Hz, 6H); 13C NMR (150 MHz, CD3OD) δ: 140.9, 137.1, 137.0, 135.4, 132.0, 130.6, 130.2, 129.2, 129.1, 128.9, 128.6, 127.7, 72.3, 49.1, 19.7, 19.5; IR (film) v: 3399, 2919, 1648, 1487, 1089, 1061, 1018, 887 cm-1; HRMS (ESI-TOF) calcd for C18H15O [M-3H]- 247.1124, found 247.1132.
(1S*, 2R*)-2-(4-Chlorophenyl)-6, 7-dimethyl-1, 2-dihydronaphthalen-1-ol (3ee): Colorless oil (20.5 mg, 72%). 1H NMR (600 MHz, CD3OD) δ: 7.25~7.21 (m, 4H), 7.09 (s, 1H), 6.94 (s, 1H), 6.64 (dd, J=9.6, 1.9 Hz, 1H), 5.99 (dd, J=9.6, 4.0 Hz, 1H), 4.80 (d, J=5.9 Hz, 1H), 3.74 (ddd, J=6.0, 4.0, 2.1 Hz, 1H), 2.26 (d, J=5.0 Hz, 6H); 13C NMR (150 MHz, CD3OD) δ: 139.6, 137.2, 137.1, 135.2, 133.4, 132.1, 131.8, 129.6, 129.2, 129.1, 129.0, 128.6, 72.0, 48.3, 19.7, 19.5; IR (film) v: 3414, 2920, 1510, 1489, 1311, 1253, 1094, 887 cm-1; HRMS (ESI-TOF) calcd for C18H14ClO [M-3H]- 281.0734, found 281.0738.
(1S*, 2R*)-6, 7-Dimethyl-2-(4-nitrophenyl)-1, 2-dihydronaphthalen-1-ol (3eg): Colorless oil (20.7 mg, 70%). 1H NMR (600 MHz, CDCl3) δ: 8.17 (d, J=8.5 Hz, 2H), 7.46 (d, J=8.5 Hz, 2H), 7.10 (s, 1H), 6.99 (s, 1H), 6.71 (d, J=8.3 Hz, 1H), 6.00 (dd, J=9.5, 3.5 Hz, 1H), 4.86 (d, J=5.4 Hz, 1H), 3.93 (s, 1H), 2.27 (d, J=9.6 Hz, 6H), 1.59 (s, 1H); 13C NMR (150 MHz, CDCl3) δ: 147.1, 147.0, 137.0, 136.9, 133.0, 130.2, 129.7, 128.9, 128.2, 128.1, 127.0, 123.5, 71.1, 47.6, 19.7, 19.5; IR (film) v: 3427, 2925, 1591, 1512, 1342, 1306, 1257, 1104, 850 cm-1; HRMS (ESI-TOF) calcd for C18H14NO3 [M-3H]- 292.0974, found 292.0982.
(1S*, 2R*)-6, 7-Difluoro-2-phenyl-1, 2-dihydronaphthalen-1-ol (3fa): Yellow oil (22.4, 87%). 1H NMR (600 MHz, CDCl3) δ: 7.33~7.28 (m, 3H), 7.21~7.17 (m, 3H), 6.98 (dd, J=10.5, 7.6 Hz, 1H), 6.60 (dd, J=9.7, 1.7 Hz, 1H), 6.16 (dd, J=9.6, 4.5 Hz, 1H), 4.95 (d, J=6.4 Hz, 1H), 3.84 (t, J=4.8 Hz, 1H), 1.56 (s, 1H); 13C NMR (150 MHz, CDCl3) δ: 150.7 (dd, J=26.5, 12.8 Hz), 149.1 (dd, J=28.5, 12.9 Hz), 136.1, 133.2 (t, J=4.1 Hz), 130.4 (d, J=2.4 Hz), 129.5 (dd, J=6.2, 4.1 Hz), 129.3, 128.8, 127.8, 126.5, 116.0 (d, J=18.5 Hz), 115.0 (d, J=17.6 Hz), 70.4, 46.6; 19F NMR (564 MHz, CDCl3) δ: -138.3 (d, J=21.5 Hz), -139.8 (d, J=20.3 Hz); IR (film) v: 3424, 2919, 1591, 1502, 1374, 1306, 1071, 875 cm-1; HRMS (ESI-TOF) calcd for C16H9F2O [M-3H]- 255.0622, found 255.0626.
(1S*, 2R*)-6, 7-Difluoro-2-(p-tolyl)-1, 2-dihydronaphthalen-1-ol (3fb): Colorless oil (21.8 mg, 80%). 1H NMR (600 MHz, CDCl3) δ: 7.18 (dd, J=10.5, 8.0 Hz, 1H), 7.10 (dd, J=23.9, 8.0 Hz, 4H), 6.97 (dd, J=10.5, 7.7 Hz, 1H), 6.58 (dd, J=9.7, 1.3 Hz, 1H), 6.14 (dd, J=9.7, 4.6 Hz, 1H), 4.94 (s, 1H), 3.80 (t, J=5.3 Hz, 1H), 2.32 (s, 3H), 1.50 (s, 1H); 13C NMR (150 MHz, CDCl3) δ: 150.6 (dd, J=20.2, 13.2 Hz), 149.0 (dd, J=22.1, 12.9 Hz), 137.6, 133.3 (t, J=4.5 Hz), 132.7, 130.7, 130.7, 129.6, 129.1, 126.4, 115.9 (d, J=18.5 Hz), 114.9 (d, J=18.0 Hz), 70.3, 46.1, 21.0; 19F NMR (564 MHz, CDCl3) δ: -138.4 (d, J=20.3 Hz), -140.0 (d, J=20.3 Hz); IR (film) v: 3410, 2923, 1507, 1449, 1378, 1308, 1072, 883 cm-1; HRMS (ESI-TOF) calcd for C17H11F2O [M-3H]- 269.0779, found 269.0785.
(1S*, 2R*)-6, 7-Difluoro-2-(4-fluorophenyl)-1, 2-dihydronaphthalen-1-ol (3ff): Colorless oil (24.6 mg, 89%). 1H NMR (600 MHz, CDCl3) δ: 7.21~7.12 (m, 3H), 7.04~6.94 (m, 3H), 6.59 (dd, J=9.6, 1.3 Hz, 1H), 6.12 (dd, J=9.6, 4.6 Hz, 1H), 4.92 (s, 1H), 3.80 (t, J=5.0 Hz, 1H), 1.51 (s, 1H); 13C NMR (150 MHz, CDCl3) δ: 162.4 (d, J=244.7 Hz), 150.7 (dd, J=19.2, 12.8 Hz), 149.0 (dd, J=20.6, 13.1 Hz), 133.0 (t, J=4.1 Hz), 131.8 (d, J=3.2 Hz), 130.8 (d, J=7.8 Hz), 130.3 (d, J=2.3 Hz), 129.4 (dd, J=6.2, 4.0 Hz), 126.6, 115.9 (d, J=18.5 Hz), 115.6 (d, J=20.9 Hz), 115.1 (d, J=17.9 Hz), 70.3, 45.8; 19F NMR (564 MHz, CDCl3) δ: -114.7 (s), -138.0 (d, J=20.3 Hz), -139.5 (d, J=20.3 Hz); IR (film) v: 3424, 2922, 1597, 1505, 1313, 1221, 1104, 878 cm-1; HRMS (ESI-TOF) calcd for C16H8F3O [M-3H]- 273.0528, found 273.0534.
(1S*, 2R*)-2-Phenyl-1, 2-dihydrotriphenylen-1-ol (3ga): White solid (16.8 mg, 52%). m.p. 156~158 ℃; 1H NMR (600 MHz, CDCl3) δ: 8.80~8.69 (m, 2H), 8.35~8.30 (m, 1H), 8.29~8.24 (m, 1H), 7.73~7.59 (m, 5H), 7.55 (dd, J=8.0, 0.9 Hz, 2H), 7.50~7.46 (m, 2H), 7.42~7.37 (m, 1H), 6.49 (ddd, J=9.8, 2.3, 1.5 Hz, 1H), 5.44 (s, 1H), 4.07~4.00 (m, 1H), 1.56 (s, 1H); 13C NMR (150 MHz, CDCl3) δ: 140.1, 130.8, 130.6, 130.6, 129.8, 129.2, 128.8, 128.7, 128.6, 127.3, 127.2, 126.9, 126.8, 126.5, 126.4, 124.1, 123.9, 123.8, 123.1, 123.1, 67.6, 48.1; IR (film) v: 3486, 2996, 1525, 1510, 1108, 775, 710 cm-1; HRMS (ESI-TOF) calcd for C24H15O [M-3H]- 319.1124, found 319.1125.
4.3 Procedure for the scaled-up synthesis of product 3aa
The experiment was carried out under air. PtCl2 (0.054 g, 10 mol%), PPh3 (0.105 g, 20 mol%), oxabicyclic alkenes 1a (0.288 g, 2.0 mmol), arylsulfonyl hydrazides 2a (0.689 g, 4.0 mmol), Cu(OAc)2 (0.544 g, 3.0 mmol) and DCE (20.0 mL) were simultaneously added to a 50 mL round-bottomed flask. The mixture was stirred at 80 ℃ in oil bath for 4 h. After cooling to room temperature, 30 mL of water was added to the reaction mixture, which then was extracted by ethyl acetate (20 mL×3), The organic layers were combined and dried with anhydrous MgSO4, and then filtered. The filtrate was concentrated under vacuum, and there sulting residue was purified on silica gel [eluent: V(ethyl acetate):V(petroleum ether)=1:20] to obtain product 3aa as a colorless oil (0.302 g, 68%).
Supporting Information The 1H NMR, 13C NMR spectra of compounds 3 and 4, the 19F NMR spectra of compounds 3af, 3df, 3fa, 3fb, 3ff, and 4bf, HPLC chromatograms of compound 3aa, and the X-ray single crystal diffraction analysis of compound 3db. The Supporting Information is available free of charge via the Internet at http://sioc-journal.cn/.
-
-
[1]
(a) Ward, R. S. Chem. Soc. Rev. 1990, 19, 1.
(b) Fagnou, K.; Lautens, M. Chem. Rev. 2003, 103, 169.
(c) Hayashi, T.; Yamasaki, K. Chem. Rev. 2003, 103, 2829.
(d) Lautens, M.; Fagnou, K.; Hiebert, S. Acc. Chem. Res. 2003, 36, 48. -
[2]
(a) Lautens, M.; Fagnou, K.; Zunic, V. Org. Lett. 2002, 4, 3465.
(b) McManus, H. A.; Fleming, M. J.; Lautens, M. Angew. Chem., Int. Ed. 2007, 46, 433.
(c) Tsoung, J.; Krämer, K.; Zajdlik, A.; Liébert, C.; Lautens, M. J. Org. Chem. 2011, 76, 9031. -
[3]
(a) Yang, D.-Q.; Long, Y.-H.; Wang, H.; Zhang, Z.-M. Org. Lett. 2008, 10, 4723.
(b) Long, Y.-H.; Li, X.-L.; Pan, X.-J.; Ding, D.-D.; Xu, X.; Zuo, X.-J.; Yang, D.-Q.; Wang, S.-Y.; Li, C.-R. Catal. Lett. 2014, 144, 419.
(c) Yang, W.; Luo, R.-S.; Yang, D.-Q. Molecules 2015, 20, 21103.
(d) Zhu, M.-N.; Chen, J.-C.; He, X.-B.; Gu, C.-P.; Xu, J.-B.; Fan, B.-M. J. Org. Chem. 2017, 82, 3167.
(e) Yang, X.; Yang, W.; Yao, Y.-Q.; Deng, Y.-Y.; Zuo, X.-J.; Yang, D.-Q. J. Org. Chem. 2018, 83, 10097.
(f) Yang, X.; Yang, W.; Yao, Y.-Q.; Deng, Y.-Y.; Yang, D.-Q. Org. Chem. Front. 2019, 6, 1151. -
[4]
(a) Rayabarapu, D. K.; Chiou, C.-F.; Cheng, C.-H. Org. Lett. 2002, 4, 1679.
(b) Li, L.-P. Rayabarapu, D. K.; Nandi, M.; Cheng, C.-H. Org. Lett. 2003, 5, 1621.
(c) Mannathana, S.; Cheng, C.-H. Adv. Synth. Catal. 2014, 356, 2239.
(d) Shukla, P.; Sharma, A.; Pallavi, B.; Cheng, C.-H. Tetrahedron 2015, 71, 2260. -
[5]
(a) Cabrera, S.; Arrayás, R. G.; Carretero, J. C. Angew. Chem., Int. Ed. 2004, 43, 3944.
(b) Zhang, T.-K.; Mo, D.-L.; Dai, L.-X.; Hou, X.-L. Org. Lett. 2008, 10, 3689.
(c) Liu, S.-S.; Li, S.-F.; Chen, H.-L.; Yang, Q.-J.; Xu, J.-B.; Zhou, Y.-Y.; Yuan, M.-L.; Zeng, W.-M.; Fan, B.-M. Adv. Synth. Catal. 2014, 356, 2960.
(d) Li, S.-F.; Xu, J.-B.; Fan, B.-M.; Lu, Z.-W.; Zeng, C.-Y.; Bian, Z.-X.; Zhou, Y.-Y.; Wang, J. Chem.-Eur. J. 2015, 21, 9003.
(e) Lu, Z.-W.; Wang, J.; Han, B.-Q.; Li, S.-F.; Zhou, Y.-Y.; Fan, B.-M. Adv. Synth. Catal. 2015, 357, 3121.
(f) Zhou, H.; Li, J.-X.; Yang, H.-M.; Xia, C.-G.; Jiang, G.-X. Org. Lett. 2015, 17, 4628.
(g) Yang, F.; Chen, J.-C.; Xu, J.-B.; Ma, F.-J.; Zhou, Y.-Y.; Shinde, M. V.; Fan, B.-M. Org. Lett. 2016, 18, 4832. -
[6]
(a) Bertozzi, F.; Pineschi, M.; Macchia, F.; Arnold, L. A.; Minnaard, A. J.; Feringa, B. L. Org. Lett. 2002, 4, 2703.
(b) Arrayas, R. G.; Cabrera, S.; Carretero, J. C. Org. Lett. 2005, 7, 219.
(c) Zhang, W.; Wang, L.-X.; Shi, W.-J.; Zhou, Q.-L. J. Org. Chem. 2005, 70, 3734.
(d) Zhang, W.; Zhu, S.-F.; Qiao, X.-C.; Zhou, Q.-L. Chem.-Asian J. 2008, 3, 2105.
(e) Millet, R.; Bernardez, T.; Palais, L.; Alexakis, A. Tetrahedron Lett. 2009, 50, 3474.
(f) Millet, R.; Gremaud, L.; Bernardez, T.; Palais, L.; Alexakis, A. Synthesis 2009, 12, 2101.
(g) Bos, P. H.; Rudolph, A.; Pérez, M.; Fañanás-Mastral, M.; Harutyunyan, S. R.; Feringa, B. L. Chem. Commun. 2012, 48, 1748. -
[7]
(a) Leong, P.; Lautens, M. J. Org. Chem. 2004, 69, 2194.
(b) Cho, Y.-H.; Zunic, V.; Senboku, H.; Olsen, M.; Lautens, M. J. Am. Chem. Soc. 2006, 128, 6837.
(c) Nishimura, T.; Tsurumaki, E.; Kawamoto, T.; Guo, X.-X.; Hayashi, T. Org. Lett. 2008, 10, 4057.
(d) Tsui, G. C.; Lautens, M. Angew. Chem., Int. Ed. 2012, 51, 5400.
(e) Zhu, J.-T.; Tsui, G. C.; Lautens, M. Angew. Chem., Int. Ed. 2012, 51, 12353.
(f) Tsui, G. C.; Ninnemann, N. M.; Hosotani, A.; Lautens, M. Org. Lett. 2013, 5, 1064.
(g) Zhang, L.; Le, C. M.; Lautens, M. Angew. Chem., Int. Ed. 2014, 53, 5951.
(h) Chen, J.-C.; Zou, L.-L.; Zeng, C.-Y.; Zhou, Y.-Y.; Fan, B.-M. Org. Lett. 2018, 20, 1283. -
[8]
(a) Meng, L.; Yang, W.; Pan, X.-J.; Tao, M.; Cheng, G.; Wang, S.-Y.; Zeng, H.-P.; Long, Y.-H.; Yang, D.-Q. J. Org. Chem. 2015, 80, 2503.
(b) Pan, X.-J.; Huang, G.-B.; Long, Y.-H.; Zuo, X.-J.; Xu, X.; Gu, F.-L.; Yang, D.-Q. J. Org. Chem. 2014, 79, 187. -
[9]
(a) Villeneuve, K.; Tam, W. J. Am. Chem. Soc. 2006, 128, 3514.
(b) Tenaglia, A.; Marc, S.; Giordano, L.; De Riggi, I. Angew. Chem., Int. Ed. 2011, 50, 9062. -
[10]
Ito, S.; Itoh, T.; Nakamura, M. Angew. Chem., Int. Ed. 2011, 50, 454. doi: 10.1002/anie.201006180
-
[11]
(a) Sawama, Y.; Kawamoto, K.; Satake, H.; Krause, N.; Kita, Y. Synlett 2010, 2151.
(b) Huang, Y.; Ma, C.; Lee, Y. X.; Huang, R.-Z.; Zhao, Y. Angew. Chem., Int. Ed. 2015, 54, 13696. -
[12]
(a) Zeng, C.-Y.; Yang, F.; Chen, J.-C.; Wang, J.; Fan, B.-M. Org. Biomol. Chem. 2015, 13, 8425.
(b) Xu, X.; Chen, J.-C.; He, Z.-X.; Zhou, Y.-Y.; Fan, B.-M. Org. Biomol. Chem. 2016, 14, 2480.
(c) Yang, W.; Cheng, G.; Li, Y.; Zuo, X.-J.; Yang, D.-Q. Synthesis 2017, 49, 2025.
(d) Shen, G.-L.; Khan, R.; Lv, H.-P.; Yang, Y.; Zhang, X.; Zhan, Y.; Zhou, Y.-Y.; Fan, B.-M. Org. Chem. Front. 2019, 6, 1423. -
[13]
(a) Cheng, H.-C.; Yang, D.-Q. J. Org. Chem. 2012, 77, 9756.
(b) Fang, S.; Liang, X.-L.; Long, Y.-H.; Li, X.-L.; Yang, D.-Q.; Wang, S.-Y.; Li, C.-R. Organometallics 2012, 31, 3113. -
[14]
Yang, D.-Q.; Xia, J.-Y.; Long, Y.-H.; Zeng, Z.-Y.; Zuo, X.-J.; Wang, S.-Y.; Li, C.-R. Org. Biomol. Chem. 2013, 11, 4871. doi: 10.1039/c3ob40891d
-
[15]
(a) Yang, D.-Q.; Liang, N. Org. Biomol. Chem. 2014, 12, 2080.
(b) Chen, G.; Yang, W.; Li, Y.; Yang, D.-Q. J. Org. Chem. 2016, 81, 7817. -
[16]
Deng, Y.-Y.; Yang, W.; Yao, Y.-Q.; Yang, X.; Zuo, X.-J.; Yang, D.-Q. Org. Biomol. Chem. 2019, 17, 703. doi: 10.1039/C8OB02864H
-
[17]
(a) Li, Y.; Yang, W.; Cheng, G.; Yang, D.-Q. J. Org. Chem. 2016, 81, 4744.
(b) Wu, R.-H.; Yang, W.; Chen, W.-K.; Yang, D.-Q. Org. Chem. Front. 2017, 4, 1921. -
[18]
(a) Zeng, Z.-Y.; Yang, D.-Q.; Long, Y.-H.; Pan, X.-J.; Huang, G.-B.; Zuo, X.-J.; Zhou, W. J. Org. Chem. 2014, 79, 5249.
(b) Zhang, W.; Chen, J.-C.; Zeng, G.-Z.; Yang, F.; Xu, J.-B.; Sun, W.-Q.; Shinde, M. V.; Fan, B.-M. J. Org. Chem. 2017, 82, 2641. -
[19]
Myers, A. G.; Zheng, B.; Movassaghi, M. J. Org. Chem. 1997, 62, 7507. doi: 10.1021/jo9710137
-
[20]
Aziz, J.; Messaoudi, S.; Alami, M.; Hamze, A. Org. Biomol. Chem. 2014, 12, 9743. doi: 10.1039/C4OB01727G
-
[21]
Chen, D.-H.; Yao, Y.-Q.; Yang, W.; Lin, Q.-F.; Li, H.-Y.; Wang, L.; Chen, S.-Q.; Tan, Y.; Yang, D.-Q. J. Org. Chem. 2019, 84, 12481. doi: 10.1021/acs.joc.9b01957
-
[1]
-
Table 1. Optimization for the reaction conditionsa
Entry Pt catalyst (mol%) Ligand (mol%) Additive (equiv.) Solvent Yieldb/% eec/% 1 PtCl2 (10) PPh3 (20) Cu(OAc)2 (3) DCE 62 2 Pt(COD)Cl2 (10) PPh3 (20) Cu(OAc)2 (3) DCE 58 3 Pt(acac)2 (10) PPh3 (20) Cu(OAc)2 (3) DCE 36 4 — PPh3 (20) Cu(OAc)2 (3) DCE 0 5 PtCl2 (5) PPh3 (10) Cu(OAc)2 (3) DCE 39 6 PtCl2 (20) PPh3 (40) Cu(OAc)2 (3) DCE 60 7 PtCl2 (10) DPPP Cu(OAc)2 (3) DCE Trace 8 PtCl2 (10) DPPE Cu(OAc)2 (3) DCE Trace 9 PtCl2 (10) DPPF Cu(OAc)2 (3) DCE 41 10 PtCl2 (10) (S)-SEGPHOS Cu(OAc)2 (3) DCE 53 36 11 PtCl2 (10) (R, S)-PPF-tBu2 Cu(OAc)2 (3) DCE 336 320 12 PtCl2 (10) (R)-BINAP Cu(OAc)2 (3) DCE 348 310 13 PtCl2 (10) (S)-DM-SEGPHOS Cu(OAc)2 (3) DCE 350 343 14 PtCl2 (10) (4S, 5S)-DIOP Cu(OAc)2 (3) DCE 310 35 15 PtCl2 (10) (2S, 4S)-BDPP Cu(OAc)2 (3) DCE 38 35 16 PtCl2 (10) PPh3 CuO (3) DCE 3Trace 17 PtCl2 (10) PPh3 CuCl2 (3) DCE 323 18 PtCl2 (10) PPh3 Cu(acac)2 (3) DCE 352 19 PtCl2 (10) PPh3 Cu(OAc)2 (3) 1, 4-Dioxane 346 20 PtCl2 (10) PPh3 Cu(OAc)2 (3) THF 351 21 PtCl2 (10) PPh3 Cu(OAc)2 (3) DMF 337 22d PtCl2 (10) PPh3 Cu(OAc)2 (3) DCE 353 23e PtCl2 (10) PPh3 Cu(OAc)2 (3) DCE 348 24 PtCl2 (10) PPh3 Cu(OAc)2 (2) DCE 373 25 PtCl2 (10) PPh3 Cu(OAc)2 (1.5) DCE 382 26 PtCl2 (10) PPh3 Cu(OAc)2 (1) DCE 365 27 PtCl2 (10) PPh3 — DCE 3n.r. 28 PtCl2 (10) — Cu(OAc)2 (1.5) DCE 320 a The reaction was carried out with Pt catalyst, ligand, additive, 1a (0.1 mmol, 1.0 equiv.) and 2a (0.2 mmol, 2.0 equiv.) in the corresponding solvent at 80 ℃ under an air atmosphere for 4 h. bIsolated yield. c Determined by HPLC with a Chiralcel OD-H column. d60 ℃. e 100 ℃. Table 2. Platinum-catalyzed ring-opening of oxabenzonorbornadiene 1a with various arylsulfonyl hydrazides 2a~2ha
Entry Ar Product Yieldb/% 1 C6H5 3aa 82 2 4-CH3C6H4 3ab 68 3 4-CH3OC6H4 3ac 66 4 2-ClC6H4 3ad 60 5 4-ClC6H4 3ae 78 6 4-FC6H4 3af 85 7 4-O2NC6H4 3ag 77 8 2, 4, 6-(CH3)3C6H2 3ah 52 a Conditions: 1a (0.1 mmol, 14.4 mg), 2 (0.2 mmol), Cu(OAc)2 (1.5 equiv.), PtCl2 (10 mol%), PPh3 (20 mol%), DCE (2 mL), 80 ℃. bIsolated yield. Table 3. Platinum-catalyzed ring-opening of oxabenzonorbornadienes 1b~1g with various arylsulfonyl hydrazidesa
Entry 1 Ar 3 Yieldb/% of 3 4 Yieldb/% of 4 1 1b C6H5 4ba 68 2 1b 4-CH3C6H4 4bb 66 3 1b 4-FC6H4 4bf 78 4 1c C6H5 4ca 70 5 1c 4-CH3C6H4 4cb 72 6 1d C6H5 3da 83 7 1d 4-CH3C6H4 3db 80 8 1d 4-FC6H4 3df 88 9 1e C6H5 3ea 71 10 1e 4-ClC6H4 3ee 72 11 1e 4-O2NC6H4 3eg 70 12 1f C6H5 3fa 87 13 1f 4-CH3C6H4 3fb 80 14 1f 4-FC6H4 3ff 89 15 1g C6H5 3ga 52 aConditions: 1 (0.1 mmol, 14.4 mg), 2 (0.2 mmol), Cu(OAc)2 (1.5 equiv.), PtCl2 (10 mol%), PPh3 (20 mol%), DCE (2 mL), 80 ℃. bIsolated yield.
计量
- PDF下载量: 57
- 文章访问数: 2646
- HTML全文浏览量: 390