Citation: Yajin Li, Huimin Liu, Lan Ma, Jiaxiong Liu, Dehua He. Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst[J]. Acta Physico-Chimica Sinica, 2024, 40(9): 230800. doi: 10.3866/PKU.WHXB202308005
Au/Co3O4-ZnO催化剂上CO2-丙三醇羰基化合成丙三醇碳酸酯
English
Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst
-
-
[1]
(1) Hepburn, C.; Adlen, E.; Beddington, J.; Carter, E. A.; Fuss, S.; Mac Dowell, N.; Minx, J. C.; Smith, P.; Williams, C. K. Nature 2019, 575 (7781), 87. doi: 10.1038/s41586-019-1681-6(1) Hepburn, C.; Adlen, E.; Beddington, J.; Carter, E. A.; Fuss, S.; Mac Dowell, N.; Minx, J. C.; Smith, P.; Williams, C. K. Nature 2019, 575 (7781), 87. doi: 10.1038/s41586-019-1681-6
-
[2]
(2) Jiang, X.; Nie, X. W.; Guo, X. W.; Song, C. S.; Chen, J. G. G. Chem. Rev. 2020, 120 (15), 7984. doi: 10.1021/acs.chemrev.9b00723(2) Jiang, X.; Nie, X. W.; Guo, X. W.; Song, C. S.; Chen, J. G. G. Chem. Rev. 2020, 120 (15), 7984. doi: 10.1021/acs.chemrev.9b00723
-
[3]
(3) Huo, Y.; Zhang, J. F.; Dai, K.; Li, Q.; Lv, J. L.; Zhu, G. P.; Liang, C. H. Appl. Catal. B-Environ. 2019, 241, 528. doi: 10.1016/j.apcatb.2018.09.073(3) Huo, Y.; Zhang, J. F.; Dai, K.; Li, Q.; Lv, J. L.; Zhu, G. P.; Liang, C. H. Appl. Catal. B-Environ. 2019, 241, 528. doi: 10.1016/j.apcatb.2018.09.073
-
[4]
(4) Chen, Y. L.; Wang, Z.; Zhong, Z. Q. Renew. Energy 2019, 131, 208. doi: 10.1016/j.renene.2018.07.047(4) Chen, Y. L.; Wang, Z.; Zhong, Z. Q. Renew. Energy 2019, 131, 208. doi: 10.1016/j.renene.2018.07.047
-
[5]
(5) Bekun, F. V.; Alola, A. A.; Sarkodie, S. A. Sci. Total Environ. 2019, 657, 1023. doi: 10.1016/j.scitotenv.2018.12.104(5) Bekun, F. V.; Alola, A. A.; Sarkodie, S. A. Sci. Total Environ. 2019, 657, 1023. doi: 10.1016/j.scitotenv.2018.12.104
-
[6]
(6) Kibria, M. G.; Edwards, J. P.; Gabardo, C. M.; Dinh, C. T.; Seifitokaldani, A.; Sinton, D.; Sargent, E. H. Adv. Mater. 2019, 31, 1807166. doi: 10.1002/adma.201807166(6) Kibria, M. G.; Edwards, J. P.; Gabardo, C. M.; Dinh, C. T.; Seifitokaldani, A.; Sinton, D.; Sargent, E. H. Adv. Mater. 2019, 31, 1807166. doi: 10.1002/adma.201807166
-
[7]
(7) Zhao, Y. F.; Waterhouse, G. I. N.; Chen, G. B.; Xiong, X. Y.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Chem. Soc. Rev. 2019, 48 (7), 1972. doi: 10.1039/c8cs00607e(7) Zhao, Y. F.; Waterhouse, G. I. N.; Chen, G. B.; Xiong, X. Y.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Chem. Soc. Rev. 2019, 48 (7), 1972. doi: 10.1039/c8cs00607e
-
[8]
(8) Aitbekova, A.; Wu, L. H.; Wrasman, C. J.; Boubnov, A.; Hoffman, A. S.; Goodman, E. D.; Bare, S. R.; Cargnello, M. J. Am. Chem. Soc. 2018, 140 (42), 13736. doi: 10.1021/jacs.8b07615(8) Aitbekova, A.; Wu, L. H.; Wrasman, C. J.; Boubnov, A.; Hoffman, A. S.; Goodman, E. D.; Bare, S. R.; Cargnello, M. J. Am. Chem. Soc. 2018, 140 (42), 13736. doi: 10.1021/jacs.8b07615
-
[9]
(9) Frei, M. S.; Capdevila-Cortada, M.; Garcia-Muelas, R.; Mondelli, C.; Lopez, N.; Stewart, J. A.; Ferre, D. C.; Perez-Ramirez, J. J. Catal. 2018, 361, 313. doi: 10.1016/j.jcat.2018.03.014(9) Frei, M. S.; Capdevila-Cortada, M.; Garcia-Muelas, R.; Mondelli, C.; Lopez, N.; Stewart, J. A.; Ferre, D. C.; Perez-Ramirez, J. J. Catal. 2018, 361, 313. doi: 10.1016/j.jcat.2018.03.014
-
[10]
(10) Ma, Z. Q.; Porosoff, M. D. ACS Catal. 2019, 9 (3), 2639. doi: 10.1021/acscatal.8b05060(10) Ma, Z. Q.; Porosoff, M. D. ACS Catal. 2019, 9 (3), 2639. doi: 10.1021/acscatal.8b05060
-
[11]
(11) Nie, X. W.; Jiang, X.; Wang, H. Z.; Luo, W. J.; Janik, M. J.; Chen, Y. G.; Guo, X. W.; Song, C. S. ACS Catal. 2018, 8 (6), 4873. doi: 10.1021/acscatal.7b04150(11) Nie, X. W.; Jiang, X.; Wang, H. Z.; Luo, W. J.; Janik, M. J.; Chen, Y. G.; Guo, X. W.; Song, C. S. ACS Catal. 2018, 8 (6), 4873. doi: 10.1021/acscatal.7b04150
-
[12]
(12) Yang, W. W.; Liu, H. M.; Li, Y. M.; Zhang, J.; Wu, H.; He, D. H. Catal. Today 2016, 259, 438. doi: 10.1016/j.cattod.2015.04.012(12) Yang, W. W.; Liu, H. M.; Li, Y. M.; Zhang, J.; Wu, H.; He, D. H. Catal. Today 2016, 259, 438. doi: 10.1016/j.cattod.2015.04.012
-
[13]
(13) Liu, H. M.; Li, Y. J.; He, D. H. Energy Technol. 2020, 8 (8), 1900493. doi: 10.1002/ente.201900493(13) Liu, H. M.; Li, Y. J.; He, D. H. Energy Technol. 2020, 8 (8), 1900493. doi: 10.1002/ente.201900493
-
[14]
(14) Chang, T.; Tamura, M.; Nakagawa, Y.; Fukaya, N.; Choi, J. C.; Mishima, T.; Matsumoto, S.; Hamura, S.; Tomishige, K. Green Chem. 2020, 22 (21), 7321. doi: 10.1039/d0gc02717k(14) Chang, T.; Tamura, M.; Nakagawa, Y.; Fukaya, N.; Choi, J. C.; Mishima, T.; Matsumoto, S.; Hamura, S.; Tomishige, K. Green Chem. 2020, 22 (21), 7321. doi: 10.1039/d0gc02717k
-
[15]
(15) Truong, C. C.; Mishra, D. K. J. CO2 Util. 2020, 41, 101252. doi: 10.1016/j.jcou.2020.101252(15) Truong, C. C.; Mishra, D. K. J. CO2 Util. 2020, 41, 101252. doi: 10.1016/j.jcou.2020.101252
-
[16]
(16) Liu, J. X.; Li, Y. M.; Zhang, J.; He, D. H. Appl. Catal. A-Gen. 2016, 513, 9. doi: 10.1016/j.apcata.2015.12.030(16) Liu, J. X.; Li, Y. M.; Zhang, J.; He, D. H. Appl. Catal. A-Gen. 2016, 513, 9. doi: 10.1016/j.apcata.2015.12.030
-
[17]
(17) Li, H. G.; Jiao, X.; Li, L.; Zhao, N.; Xiao, F. K.; Wei, W.; Sun, Y. H.; Zhang, B. S. Catal. Sci. Technol. 2015, 5 (2), 989. doi: 10.1039/c4cy01237b(17) Li, H. G.; Jiao, X.; Li, L.; Zhao, N.; Xiao, F. K.; Wei, W.; Sun, Y. H.; Zhang, B. S. Catal. Sci. Technol. 2015, 5 (2), 989. doi: 10.1039/c4cy01237b
-
[18]
(18) Su, X. L. N.; Lin, W. W.; Cheng, H. Y.; Zhang, C.; Wang, Y.; Yu, X. J.; Wu, Z. J.; Zhao, F. Y. Green Chem. 2017, 19 (7), 1775. doi: 10.1039/c7gc00260b(18) Su, X. L. N.; Lin, W. W.; Cheng, H. Y.; Zhang, C.; Wang, Y.; Yu, X. J.; Wu, Z. J.; Zhao, F. Y. Green Chem. 2017, 19 (7), 1775. doi: 10.1039/c7gc00260b
-
[19]
(19) Zhang, J.; He, D. H. J. Colloid Interface Sci. 2014, 419, 31. doi: 10.1016/j.jcis.2013.12.049(19) Zhang, J.; He, D. H. J. Colloid Interface Sci. 2014, 419, 31. doi: 10.1016/j.jcis.2013.12.049
-
[20]
(20) Huang, X. Q.; Tang, S. H.; Mu, X. L.; Dai, Y.; Chen, G. X.; Zhou, Z. Y.; Ruan, F. X.; Yang, Z. L.; Zheng, N. F. Nat. Nanotechnol. 2011, 6 (1), 28. doi: 10.1038/nnano.2010.235(20) Huang, X. Q.; Tang, S. H.; Mu, X. L.; Dai, Y.; Chen, G. X.; Zhou, Z. Y.; Ruan, F. X.; Yang, Z. L.; Zheng, N. F. Nat. Nanotechnol. 2011, 6 (1), 28. doi: 10.1038/nnano.2010.235
-
[21]
(21) Wang, J.; Li, Y. Y.; Deng, L.; Wei, N. N.; Weng, Y. K.; Dong, S.; Qi, D. P.; Qiu, J.; Chen, X. D.; Wu, T. Adv. Mater. 2017, 29 (3), 1603730. doi: 10.1002/adma.201603730(21) Wang, J.; Li, Y. Y.; Deng, L.; Wei, N. N.; Weng, Y. K.; Dong, S.; Qi, D. P.; Qiu, J.; Chen, X. D.; Wu, T. Adv. Mater. 2017, 29 (3), 1603730. doi: 10.1002/adma.201603730
-
[22]
(22) Reithofer, M. R.; Sum, Y. N.; Zhang, Y. G. Green Chem. 2013, 15 (8), 2086. doi: 10.1039/c3gc40790j(22) Reithofer, M. R.; Sum, Y. N.; Zhang, Y. G. Green Chem. 2013, 15 (8), 2086. doi: 10.1039/c3gc40790j
-
[23]
(23) Park, C. Y.; Huy, N. P.; Shin, E. W. Mol. Catal. 2017, 435, 99. doi: 10.1016/j.mcat.2017.03.025(23) Park, C. Y.; Huy, N. P.; Shin, E. W. Mol. Catal. 2017, 435, 99. doi: 10.1016/j.mcat.2017.03.025
-
[24]
(24) Li, Y. J.; Liu, H. M.; Ma, L.; Liu, J. X.; He, D. H. Catal. Sci. Technol. 2021, 11 (3), 1007. doi: 10.1039/d0cy01821j(24) Li, Y. J.; Liu, H. M.; Ma, L.; Liu, J. X.; He, D. H. Catal. Sci. Technol. 2021, 11 (3), 1007. doi: 10.1039/d0cy01821j
-
[25]
(25) Liu, H. M.; Li, Y. J.; Ma, L.; Liu, J. X.; He, D. H. Fuel 2022, 315, 123294. doi: 10.1016/j.fuel.2022.123294(25) Liu, H. M.; Li, Y. J.; Ma, L.; Liu, J. X.; He, D. H. Fuel 2022, 315, 123294. doi: 10.1016/j.fuel.2022.123294
-
[26]
(26) Gelle, A.; Jin, T.; de la Garza, L.; Price, G. D.; Besteiro, L. V.; Moores, A. Chem. Rev. 2020, 120 (2), 986. doi: 10.1021/acs.chemrev.9b00187(26) Gelle, A.; Jin, T.; de la Garza, L.; Price, G. D.; Besteiro, L. V.; Moores, A. Chem. Rev. 2020, 120 (2), 986. doi: 10.1021/acs.chemrev.9b00187
-
[27]
(27) Xu, Y.; Bai, P.; Zhou, X. D.; Akimov, Y.; Png, C. E.; Ang, L. K.; Knoll, W.; Wu, L. Adv. Opt. Mater. 2019, 7 (9), 1801433. doi: 10.1002/adom.201801433(27) Xu, Y.; Bai, P.; Zhou, X. D.; Akimov, Y.; Png, C. E.; Ang, L. K.; Knoll, W.; Wu, L. Adv. Opt. Mater. 2019, 7 (9), 1801433. doi: 10.1002/adom.201801433
-
[28]
(28) Kim, M.; Lee, J. H.; Nam, J. M. Adv. Sci. 2019, 6 (17), 1900471. doi: 10.1002/advs.201900471(28) Kim, M.; Lee, J. H.; Nam, J. M. Adv. Sci. 2019, 6 (17), 1900471. doi: 10.1002/advs.201900471
-
[29]
(29) Madhumitha, G.; Fowsiya, J.; Gupta, N.; Kumar, A.; Singh, M. J. Phys. Chem. Solids 2019, 127, 43. doi: 10.1016/j.jpcs.2018.12.005(29) Madhumitha, G.; Fowsiya, J.; Gupta, N.; Kumar, A.; Singh, M. J. Phys. Chem. Solids 2019, 127, 43. doi: 10.1016/j.jpcs.2018.12.005
-
[30]
(30) Reddy, K.; Reddy, A. J.; Krishna, R. H.; Nagabhushana, B. M.; Gopal, R. J. Asian Ceram. Soc. 2017, 5 (3), 350. doi: 10.1016/j.jascer.2017.06.008(30) Reddy, K.; Reddy, A. J.; Krishna, R. H.; Nagabhushana, B. M.; Gopal, R. J. Asian Ceram. Soc. 2017, 5 (3), 350. doi: 10.1016/j.jascer.2017.06.008
-
[31]
(31) Karimi-Maleh, H.; Yola, M. L.; Atar, N.; Orooji, Y.; Karimi, F.; Kumar, P. S.; Rouhi, J.; Baghayeri, M. J. Colloid Interface Sci. 2021, 592, 174. doi: 10.1016/j.jcis.2021.02.066(31) Karimi-Maleh, H.; Yola, M. L.; Atar, N.; Orooji, Y.; Karimi, F.; Kumar, P. S.; Rouhi, J.; Baghayeri, M. J. Colloid Interface Sci. 2021, 592, 174. doi: 10.1016/j.jcis.2021.02.066
-
[32]
(32) Lukashuk, L.; Yigit, N.; Rameshan, R.; Kolar, E.; Teschner, D.; Havecker, M.; Knop-Gericke, A.; Schlogl, R.; Fottinger, K.; Rupprechter, G. ACS Catal. 2018, 8 (9), 8630. doi: 10.1021/acscatal.8b01237(32) Lukashuk, L.; Yigit, N.; Rameshan, R.; Kolar, E.; Teschner, D.; Havecker, M.; Knop-Gericke, A.; Schlogl, R.; Fottinger, K.; Rupprechter, G. ACS Catal. 2018, 8 (9), 8630. doi: 10.1021/acscatal.8b01237
-
[33]
(33) Aparna, T. K.; Sivasubramanian, R.; Dar, M. A. J. Alloy. Compd. 2018, 741, 1130. doi: 10.1016/j.jallcom.2018.01.205(33) Aparna, T. K.; Sivasubramanian, R.; Dar, M. A. J. Alloy. Compd. 2018, 741, 1130. doi: 10.1016/j.jallcom.2018.01.205
-
[34]
(34) Yang, Y. T.; Jiang, K. D.; Guo, J.; Li, J.; Peng, X. L.; Hong, B.; Wang, X. Q.; Ge, H. L. Chem. Eng. J. 2020, 381, 122596. doi: 10.1016/j.cej.2019.122596(34) Yang, Y. T.; Jiang, K. D.; Guo, J.; Li, J.; Peng, X. L.; Hong, B.; Wang, X. Q.; Ge, H. L. Chem. Eng. J. 2020, 381, 122596. doi: 10.1016/j.cej.2019.122596
-
[35]
(35) Wang, C.; Lin, G.; Zhao, J. L.; Wang, S. X.; Zhang, L. B.; Xi, Y. H.; Li, X. T.; Ying, Y. Chem. Eng. J. 2020, 380, 122511. doi: 10.1016/j.cej.2019.122511(35) Wang, C.; Lin, G.; Zhao, J. L.; Wang, S. X.; Zhang, L. B.; Xi, Y. H.; Li, X. T.; Ying, Y. Chem. Eng. J. 2020, 380, 122511. doi: 10.1016/j.cej.2019.122511
-
[36]
(36) Wang, J. P.; Wang, Z. Y.; Huang, B. B.; Ma, Y. D.; Liu, Y. Y.; Qin, X. Y.; Zhang, X. Y.; Dai, Y. ACS Appl. Mater. Interfaces 2012, 4 (8), 4024. doi: 10.1021/am300835p(36) Wang, J. P.; Wang, Z. Y.; Huang, B. B.; Ma, Y. D.; Liu, Y. Y.; Qin, X. Y.; Zhang, X. Y.; Dai, Y. ACS Appl. Mater. Interfaces 2012, 4 (8), 4024. doi: 10.1021/am300835p
-
[37]
(37) Zheng, Y. H.; Chen, C. Q.; Zhan, Y. Y.; Lin, X. Y.; Zheng, Q.; Wei, K. M.; Zhu, J. F. J. Phys. Chem. C 2008, 112 (29), 10773. doi: 10.1021/jp8027275(37) Zheng, Y. H.; Chen, C. Q.; Zhan, Y. Y.; Lin, X. Y.; Zheng, Q.; Wei, K. M.; Zhu, J. F. J. Phys. Chem. C 2008, 112 (29), 10773. doi: 10.1021/jp8027275
-
[38]
(38) Lin, X. T.; Li, S. J.; He, H.; Wu, Z.; Wu, J. L.; Chen, L. M.; Ye, D. Q.; Fu, M. L. Appl. Catal. B-Environ. 2018, 223, 91. doi: 10.1016/j.apcatb.2017.06.071(38) Lin, X. T.; Li, S. J.; He, H.; Wu, Z.; Wu, J. L.; Chen, L. M.; Ye, D. Q.; Fu, M. L. Appl. Catal. B-Environ. 2018, 223, 91. doi: 10.1016/j.apcatb.2017.06.071
-
[39]
(39) Chen, L. W.; Ding, D. H.; Liu, C.; Cai, H.; Qu, Y.; Yang, S. J.; Gao, Y.; Cai, T. M. Chem. Eng. J. 2018, 334, 273. doi: 10.1016/j.cej.2017.10.040(39) Chen, L. W.; Ding, D. H.; Liu, C.; Cai, H.; Qu, Y.; Yang, S. J.; Gao, Y.; Cai, T. M. Chem. Eng. J. 2018, 334, 273. doi: 10.1016/j.cej.2017.10.040
-
[40]
(40) Gomes, J. R. B.; Ramalho, J. P. P.; Illas, F. Surf. Sci. 2010, 604 (3–4), 428. doi: 10.1016/j.susc.2009.12.009(40) Gomes, J. R. B.; Ramalho, J. P. P.; Illas, F. Surf. Sci. 2010, 604 (3–4), 428. doi: 10.1016/j.susc.2009.12.009
-
[41]
(41) Liu, H. M.; Meng, X. G.; Dao, T. D.; Zhang, H. B.; Li, P.; Chang, K.; Wang, T.; Li, M.; Nagao, T.; Ye, J. H. Angew. Chem. Int. Ed. 2015, 54 (39), 11545. doi: 10.1002/anie.201504933(41) Liu, H. M.; Meng, X. G.; Dao, T. D.; Zhang, H. B.; Li, P.; Chang, K.; Wang, T.; Li, M.; Nagao, T.; Ye, J. H. Angew. Chem. Int. Ed. 2015, 54 (39), 11545. doi: 10.1002/anie.201504933
-
[42]
(42) Liu, H. M.; Li, M.; Dao, T. D.; Liu, Y. Y.; Zhou, W.; Liu, L. Q.; Meng, X. G.; Nagao, T.; Ye, J. H. Nano Energy 2016, 26, 398. doi: 10.1016/j.nanoen.2016.05.045(42) Liu, H. M.; Li, M.; Dao, T. D.; Liu, Y. Y.; Zhou, W.; Liu, L. Q.; Meng, X. G.; Nagao, T.; Ye, J. H. Nano Energy 2016, 26, 398. doi: 10.1016/j.nanoen.2016.05.045
-
[43]
(43) Ashokkumar, M.; Muthukumaran, S. J. Magn. Magn. Mater. 2015, 374, 61. doi: 10.1016/j.jmmm.2014.08.023(43) Ashokkumar, M.; Muthukumaran, S. J. Magn. Magn. Mater. 2015, 374, 61. doi: 10.1016/j.jmmm.2014.08.023
-
[44]
(44) Kulal, N.; Vetrivel, R.; Krishna, N. S. G.; Shanbhag, G. V. ACS Appl. Nano Mater. 2021, 4 (5), 4388. doi: 10.1021/acsanm.0c03166(44) Kulal, N.; Vetrivel, R.; Krishna, N. S. G.; Shanbhag, G. V. ACS Appl. Nano Mater. 2021, 4 (5), 4388. doi: 10.1021/acsanm.0c03166
-
[45]
(45) Hu, C. C.; Chang, C. W.; Yoshida, M.; Wang, K. H. J. Mater. Chem. A 2021, 9 (11), 7048. doi: 10.1039/d0ta12413c(45) Hu, C. C.; Chang, C. W.; Yoshida, M.; Wang, K. H. J. Mater. Chem. A 2021, 9 (11), 7048. doi: 10.1039/d0ta12413c
-
[46]
(46) Zhang, J.; He, D. H. J. Chem. Technol. Biotechnol. 2015, 90 (6), 1077. doi: 10.1002/jctb.4414(46) Zhang, J.; He, D. H. J. Chem. Technol. Biotechnol. 2015, 90 (6), 1077. doi: 10.1002/jctb.4414
-
[47]
(47) Li, H. G.; Xin, C. L.; Jiao, X.; Zhao, N.; Xiao, F. K.; Li, L.; Wei, W.; Sun, Y. H. J. Mol. Catal. A-Chem. 2015, 402, 71. doi: 10.1016/j.molcata.2015.03.012(47) Li, H. G.; Xin, C. L.; Jiao, X.; Zhao, N.; Xiao, F. K.; Li, L.; Wei, W.; Sun, Y. H. J. Mol. Catal. A-Chem. 2015, 402, 71. doi: 10.1016/j.molcata.2015.03.012
-
[48]
(48) Liu, J. X.; Li, Y. J.; Liu, H. M.; He, D. H. Appl. Catal. B-Environ. 2019, 244, 836. doi: 10.1016/j.apcatb.2018.12.018(48) Liu, J. X.; Li, Y. J.; Liu, H. M.; He, D. H. Appl. Catal. B-Environ. 2019, 244, 836. doi: 10.1016/j.apcatb.2018.12.018
-
[49]
(49) Ingram, D. B.; Christopher, P.; Bauer, J. L.; Linic, S. ACS Catal. 2011, 1 (10), 1441. doi: 10.1021/cs200320h(49) Ingram, D. B.; Christopher, P.; Bauer, J. L.; Linic, S. ACS Catal. 2011, 1 (10), 1441. doi: 10.1021/cs200320h
-
[50]
(50) Aguado, E. R.; Cecilia, J. A.; Infantes-Molina, A.; Talon, A.; Storaro, L.; Moretti, E.; Rodriguez-Castellon, E. Dalton Trans. 2020, 49 (13), 3946. doi: 10.1039/c9dt04243a(50) Aguado, E. R.; Cecilia, J. A.; Infantes-Molina, A.; Talon, A.; Storaro, L.; Moretti, E.; Rodriguez-Castellon, E. Dalton Trans. 2020, 49 (13), 3946. doi: 10.1039/c9dt04243a
-
[51]
(51) Du, H.; Williams, C. T.; Ebner, A. D.; Ritter, J. A. Chem. Mater. 2010, 22 (11), 3519. doi: 10.1021/cm100703e(51) Du, H.; Williams, C. T.; Ebner, A. D.; Ritter, J. A. Chem. Mater. 2010, 22 (11), 3519. doi: 10.1021/cm100703e
-
[52]
(52) Stevens, R. W.; Siriwardane, R. V.; Logan, J. Energy Fuels 2008, 22 (5), 3070. doi: 10.1021/ef800209a(52) Stevens, R. W.; Siriwardane, R. V.; Logan, J. Energy Fuels 2008, 22 (5), 3070. doi: 10.1021/ef800209a
-
[53]
(53) Reinoso, D. M.; Damiani, D. E.; Tonetto, G. M. Appl. Catal. B- Environ. 2014, 144, 308. doi: 10.1016/j.apcatb.2013.07.026(53) Reinoso, D. M.; Damiani, D. E.; Tonetto, G. M. Appl. Catal. B- Environ. 2014, 144, 308. doi: 10.1016/j.apcatb.2013.07.026
-
[54]
(54) Rakibuddin, M.; Ananthakrishnan, R. RSC Adv. 2015, 5 (83), 68117. doi: 10.1039/c5ra07799k(54) Rakibuddin, M.; Ananthakrishnan, R. RSC Adv. 2015, 5 (83), 68117. doi: 10.1039/c5ra07799k
-
[1]
计量
- PDF下载量: 0
- 文章访问数: 501
- HTML全文浏览量: 29