电子自旋效应在电催化剂中的作用

李景学 于跃 徐斯然 闫文付 木士春 张佳楠

引用本文: 李景学, 于跃, 徐斯然, 闫文付, 木士春, 张佳楠. 电子自旋效应在电催化剂中的作用[J]. 物理化学学报, 2023, 39(12): 230204. doi: 10.3866/PKU.WHXB202302049 shu
Citation:  Jingxue Li, Yue Yu, Siran Xu, Wenfu Yan, Shichun Mu, Jia-Nan Zhang. Function of Electron Spin Effect in Electrocatalysts[J]. Acta Physico-Chimica Sinica, 2023, 39(12): 230204. doi: 10.3866/PKU.WHXB202302049 shu

电子自旋效应在电催化剂中的作用

    通讯作者: 张佳楠, zjn@zzu.edu.cn
  • 基金项目:

    国家自然科学基金 U22A20107

    国家自然科学基金 U1967215

    郑州大学杰出青年创新团队 32320275

    河南省高等教育教学改革研究与实践项目(研究生教育) 2021SJGLX093Y

    河南省省级科技研发计划联合基金(优势学科培育类) 222301420001

摘要: 高效电催化剂的开发对于能源转换及储存技术的发展至关重要。自旋作为粒子的内禀性质,能够对化学反应的过程产生独特的影响。因此,调控电催化剂内部自旋状态能够有效提升催化剂整体性能。本综述首先介绍了电子自旋以及自旋调控的影响因素,随后从热力学和动力学两方面阐述了自旋效应在电催化中的作用机理。进一步,我们综述了自旋效应在氧还原反应(ORR)、析氧反应(OER)、氮还原反应(NRR)、二氧化碳还原反应(CO2RR)中的最新研究进展,详细介绍了自旋调控在上述四种反应中的催化机理。同时本文总结了电子自旋的先进表征方法和自旋催化的第一性原理计算方法。最后,我们展望了自旋效应在电催化领域的发展趋势。因此,认识并了解电子自旋效应有助于加深对电催化反应过程的机制理解,指导设计高效催化剂,具有巨大的研究价值。

English

    1. [1]

      Tarascon, J. M.; Armand, M. Nature 2001, 414 (6861), 359. doi: 10.1038/35104644

    2. [2]

      Luo, M. C.; Guo, S. J. Nat. Rev. Mater. 2017, 2, 17059. doi: 10.1038/natrevmats.2017.59

    3. [3]

      Cook, T. R.; Dogutan, D. K.; Reece, S. Y.; Surendranath, Y.; Teets, T. S.; Nocera, D. G. Chem. Rev. 2010, 110 (11), 6474. doi: 10.1021/cr100246c

    4. [4]

      王彬宇, 李莉, 李菁, 靳科研, 张少卿, 张佳楠, 闫文付. 高等化学学报, 2021, 42, 40. doi: 10.7503/cjcu20200362.Wang, B, Y.; Li, L.; Li, Q.; Jin, K. Y.; Zhang, S. Q.; Zhang, J. N.; Yan, W. F. Chem. J. Chin. Univ. 2021, 42, 40. doi: 10.7503/cjcu20200362

    5. [5]

      Wang, L. G.; Wang, D. S.; Li, Y. D. Carbon Energy 2022, 4 (6), 1021. doi: 10.1002/cey2.194

    6. [6]

      Fang, Y.; Hou, Y.; Fu, X.; Wang, X. Chem. Rev. 2022, 122 (3), 4204. doi: 10.1021/acs.chemrev.1c00686

    7. [7]

      周威, 郭君康, 申升, 潘金波, 唐杰, 陈浪, 区泽堂, 尹双凤. 物理化学学报, 2020, 36 (3), 1906048. doi: 10.3866/PKU.WHXB201906048.

    8. [8]

      Suen, N. T.; Hung, S. F.; Quan, Q.; Zhang, N.; Xu, Y. J.; Chen, H. M. Chem. Soc. Rev. 2017, 46 (2), 337. doi: 10.1039/c6cs00328a

    9. [9]

      Wang, X. X.; Swihart, M. T.; Wu, G. Nat. Catal. 2019, 2 (7), 578. doi: 10.1038/s41929-019-0304-9

    10. [10]

      Nie, Y.; Li, L.; Wei, Z. Chem. Soc. Rev. 2015, 44 (8), 2168. doi: 10.1039/c4cs00484a

    11. [11]

      Pegis, M. L.; Wise, C. F.; Martin, D. J.; Mayer, J. M. Chem. Rev. 2018, 118 (5), 2340. doi: 10.1021/acs.chemrev.7b00542

    12. [12]

      Wang, G.; Chen, J.; Ding, Y.; Cai, P.; Yi, L.; Li, Y.; Tu, C.; Hou, Y.; Wen, Z.; Dai, L. Chem. Soc. Rev. 2021, 50 (8), 4993. doi: 10.1039/d0cs00071j

    13. [13]

      Guo, W.; Zhang, K.; Liang, Z.; Zou, R.; Xu, Q. Chem. Soc. Rev. 2019, 48 (24), 5658. doi: 10.1039/c9cs00159j

    14. [14]

      Zheng, C.; Zhang, X.; Zhou, Z.; Hu, Z. eScience 2022, 2 (2), 219. doi: 10.1016/j.esci.2022.02.009

    15. [15]

      Li, J. J.; Zhang, L.; Doyle-Davis, K.; Li, R. Y.; Sun, X. L. Carbon Energy 2020, 2 (4), 488. doi: 10.1002/cey2.74

    16. [16]

      Jiao, K.; Xuan, J.; Du, Q.; Bao, Z.; Xie, B.; Wang, B.; Zhao, Y.; Fan, L.; Wang, H.; Hou, Z.;et al. Nature 2021, 595 (7867), 361. doi: 10.1038/s41586-021-03482-7

    17. [17]

      李孟婷, 郑星群, 李莉, 魏子栋. 物理化学学报, 2021, 37 (9), 2007054. doi: 10.3866/PKU.WHXB202007054Li, M. T.; Zheng, X. Q.; Li, L.; Wei, Z. D. Acta Phys.-Chim. Sin. 2021, 37 (9), 2007054. doi: 10.3866/PKU.WHXB202007054

    18. [18]

      Xiao, M.; Chen, Y.; Zhu, J.; Zhang, H.; Zhao, X.; Gao, L.; Wang, X.; Zhao, J.; Ge, J.; Jiang, Z.;et al. J. Am. Chem. Soc. 2019, 141 (44), 17763. doi: 10.1021/jacs.9b08362

    19. [19]

      Cheng, Y.; Gong, X.; Tao, S.; Hu, L.; Zhu, W.; Wang, M.; Shi, J.; Liao, F.; Geng, H.; Shao, M. Nano Energy 2022, 98, 107341. doi: 10.1016/j.nanoen.2022.107341

    20. [20]

      Peng, L. S.; Shah, S. S.; Wei, Z. D. Chin. J. Catal. 2018, 39, 1575. doi: 10.1016/s1872-2067(18)63130-4

    21. [21]

      Xia, C.; Qiu, Y.; Xia, Y.; Zhu, P.; King, G.; Zhang, X.; Wu, Z.; Kim, J. Y.; Cullen, D. A.; Zheng, D.;et al. Nat. Chem. 2021, 13 (9), 887. doi: 10.1038/s41557-021-00734-x

    22. [22]

      Yang, Z.; Zhang, J.; Kintner-Meyer, M.; Lu, X.; Choi, D.; Lemmon, J. P.; Liu, J. Chem. Rev. 2011, 111 (5), 3577. doi: 10.1021/cr100290v

    23. [23]

      Xia, H.; Zan, L.; Yuan, P.; Qu, G.; Dong, H.; Wei, Y.; Yu, Y.; Wei, Z.; Yan, W.; Hu, J. S.;et al. Angew. Chem. Int. Ed. 2023,e202218282. doi: 10.1002/anie.202218282

    24. [24]

      徐斯然, 吴奇, 卢帮安, 唐堂, 张佳楠, 胡劲松. 物理化学学报, 2023, 39 (2), 2209001. doi: 10.3866/PKU.WHXB202209001.Xu, S. R.; Wu, Q.; Lu, B. A.; Tang, T.; Zhang, J. N.; Hu, J. S. Acta Phys.-Chim. Sin. 2023, 39 (2), 2209001. doi: 10.3866/PKU.WHXB202209001

    25. [25]

      Wei, C.; Feng, Z.; Scherer, G. G.; Barber, J.; Shao-Horn, Y.; Xu, Z. J. Adv. Mater. 2017, 29 (23), 1606800. doi: 10.1002/adma.201606800

    26. [26]

      Chen, J.; Zheng, F.; Zhang, S.-J.; Fisher, A.; Zhou, Y.; Wang, Z.; Li, Y.; Xu, B.-B.; Li, J.-T.; Sun, S.-G. ACS Catal. 2018, 8 (12), 11342. doi: 10.1021/acscatal.8b03489

    27. [27]

      Agyeman, D. A.; Zheng, Y.; Lee, T.-H.; Park, M.; Tamakloe, W.; Lee, G.-H.; Jang, H. W.; Cho, K.; Kang, Y.-M. ACS Catal. 2020, 11 (1), 424. doi: 10.1021/acscatal.0c02608

    28. [28]

      Zhou, Y.; Sun, S.; Wei, C.; Sun, Y.; Xi, P.; Feng, Z.; Xu, Z. J. Adv. Mater. 2019, 31 (41), 1902509. doi: 10.1002/adma.201902509

    29. [29]

      Yan, X.; Liu, D. L.; Cao, H. H.; Hou, F.; Liang, J.; Dou, S. X. Small Methods 2019, 3 (9), 1800501. doi: 10.1002/smtd.201800501

    30. [30]

      Chen, J. G.; Crooks, R. M.; Seefeldt, L. C.; Bren, K. L.; Bullock, R. M.; Darensbourg, M. Y.; Holland, P. L.; Hoffman, B.; Janik, M. J.; Jones, A. K.;et al. Science 2018, 360 (6391), eaar6611. doi: 10.1126/science.aar6611

    31. [31]

      Suryanto, B. H. R.; Du, H. L.; Wang, D. B.; Chen, J.; Simonov, A. N.; MacFarlane, D. R. Nat. Catal. 2019, 2 (4), 290. doi: 10.1038/s41929-019-0252-4

    32. [32]

      Wang, X.; Qiu, S.; Feng, J.; Tong, Y.; Zhou, F.; Li, Q.; Song, L.; Chen, S.; Wu, K. H.; Su, P.;et al. Adv. Mater. 2020, 32 (40), e2004382. doi: 10.1002/adma.202004382

    33. [33]

      Zhang, L.; Cong, M.; Ding, X.; Jin, Y.; Xu, F.; Wang, Y.; Chen, L.; Zhang, L. Angew. Chem. Int. Ed. 2020, 59 (27), 10888. doi: 10.1002/anie.202003518

    34. [34]

      Li, C.; Xu, R. Z.; Ma, S. X.; Xie, Y. H.; Qu, K. G.; Bao, H. F.; Cai, W. W.; Yang, Z. H. Chem. Eng. J. 2021, 415, 129018. doi: 10.1016/j.cej.2021.129018

    35. [35]

      Qi, J. M.; Zhou, S. L.; Xie, K.; Lin, S. J. Energy Chem. 2021, 60, 249. doi: 10.1016/j.jechem.2021.01.016

    36. [36]

      Ren, S.; Joulie, D.; Salvatore, D.; Torbensen, K.; Wang, M.; Robert, M.; Berlinguette, C. P. Science 2019, 365 (6451), 367. doi: 10.1126/science.aax4608

    37. [37]

      Li, F.; Thevenon, A.; Rosas-Hernández, A.; Wang, Z.; Li, Y.; Gabardo, C. M.; Ozden, A.; Dinh, C. T.; Li, J.; Wang, Y.;et al. Nature 2019, 577 (7791), 509. doi: 10.1038/s41586-019-1782-2

    38. [38]

      Lin, J.; Song, W.; Xiao, C.; Ding, J.; Huang, Z.; Zhong, C.; Ding, J.; Hu, W. Carbon Energy 2023. doi: 10.1002/cey2.313

    39. [39]

      张小玉, 薛冬萍, 杜宇, 蒋粟, 魏一帆, 闫文付, 夏会聪, 张佳楠. 高等学校化学学报, 2022, 43 (3), 12. doi: 10.7503/cjcu20210689.Zhang, X. Y.; Xue, D. P.; Du, Y.; Jiang, S.; Wei, Y. F.; Yan, W. F.; Xia, H. C.; Zhang, J. N. Chem. J. Chin. Univ. 2022, 43 (3), 12. doi: 10.7503/cjcu20210689

    40. [40]

      Zhu, Y. T.; Cui, X. Y.; Liu, H. L.; Guo, Z. G.; Dang, Y. F.; Fan, Z. X.; Zhang, Z. C.; Hu, W. P. Nano Res. 2021, 14 (12), 4471. doi: 10.1007/s12274-021-3448-2

    41. [41]

      Liu, M.; Liu, S.; Xu, Q.; Miao, Q.; Yang, S.; Hanson, S.; Chen, G. Z.; He, J.; Jiang, Z.; Zeng, G. Carbon Energy 2023. doi: 10.1002/cey2.300

    42. [42]

      Jeon, I. Y.; Zhang, S.; Zhang, L.; Choi, H. J.; Seo, J. M.; Xia, Z.; Dai, L.; Baek, J. B. Adv. Mater. 2013, 25 (42), 6138. doi: 10.1002/adma.201302753

    43. [43]

      Zhang, Y. K.; Lin, Y. X.; Duan, T.; Song, L. Mater. Today 2021, 48, 115. doi: 10.1016/j.mattod.2021.02.004

    44. [44]

      Hu, H.; Wang, J. L.; Tao, P.; Song, C. Y.; Shang, W.; Deng, T.; Wu, J. B. J. Mater. Chem. A 2022, 10 (11), 5835. doi: 10.1039/d1ta08582d

    45. [45]

      Hammer, B.; Nørskov, J. K. Surf. Sci. 1995, 343 (3), 211. doi: 10.1016/0039-6028(96)80007-0

    46. [46]

      Rabi, I. I. Nature 1929, 123 (3092), 163. doi: 10.1038/123163b0

    47. [47]

      Eliezer, C. J. Nature 1951, 167 (4237), 78. doi: 10.1038/167078b0

    48. [48]

      Avsar, A.; Tan, J. Y.; Kurpas, M.; Gmitra, M.; Watanabe, K.; Taniguchi, T.; Fabian, J.; Ozyilmaz, B. Nat. Phys. 2017, 13 (9), 888. doi: 10.1038/nphys4141

    49. [49]

      Deng, Y.; Yu, Y.; Song, Y.; Zhang, J.; Wang, N. Z.; Sun, Z.; Yi, Y.; Wu, Y. Z.; Wu, S.; Zhu, J.;et al. Nature 2018, 563 (7729), 94. doi: 10.1038/s41586-018-0626-9

    50. [50]

      Wang, C.; Dong, H.; Jiang, L.; Hu, W. Chem. Soc. Rev. 2018, 47 (2), 422. doi: 10.1039/c7cs00490g

    51. [51]

      Ternberg, J. L. JAMA 1963, 183, 339. doi: 10.1001/jama.1963.63700050009013b

    52. [52]

      Zhang, A.; Liang, Y.; Zhang, H.; Geng, Z.; Zeng, J. Chem. Soc. Rev. 2021, 50 (17), 9817. doi: 10.1039/d1cs00330e

    53. [53]

      Li, S.; Xia, L.; Li, J.; Chen, Z.; Zhang, W.; Zhu, J.; Yu, R.; Liu, F.; Lee, S.; Zhao, Y.;et al. Energy Environ. Mater. 2023. doi: 10.1002/eem2.12560

    54. [54]

      Yu, Y.; Xue, D.; Xia, H.; Zhang, X.; Zhao, S.; Wei, Y.; Du, Y.; Zhou, Y.; Yan, W.; Zhang, J. J. Phys. Condens. Mat. 2022, 34 (36), 364002. doi: 10.1088/1361-648x/ac7995

    55. [55]

      Zhang, Z.; Ma, P.; Luo, L.; Ding, X.; Zhou, S.; Zeng, J. Angew. Chem. Int. Ed. 2023. doi: 10.1002/anie.202216837

    56. [56]

      Naaman, R.; Paltiel, Y.; Waldeck, D. H. Nat. Rev. Chem. 2019, 3 (4), 250. doi: 10.1038/s41570-019-0087-1

    57. [57]

      Soulenm R.; Byers, J.; Osofsky, M.; Nadgorny, B.; Ambrose, T.; Cheng, S.; Broussard, P.; Tanaka, C.; Nowak, J.; Moodera, J.; et al. Science 1998, 282 (5386), 85. doi: 10.1126/science.282.5386.85

    58. [58]

      Akimitsu, J.; Takenawa, K.; Suzuki, K.; Harima, H.; Kuramoto, Y. Science 2001, 293 (5532), 1125. doi: 10.1126/science.1061501

    59. [59]

      Zhukov, E. A.; Kirstein, E.; Kopteva, N. E.; Heisterkamp, F.; Yugova, I. A.; Korenev, V. L.; Yakovlev, D. R.; Pawlis, A.; Bayer, M.; Greilich, A. Nat. Commun. 2018, 9 (1), 1941. doi: 10.1038/s41467-018-04359-6

    60. [60]

      Chen, G.; Sun, Y.; Chen, R. R.; Biz, C.; Fisher, A. C.; Sherburne, M. P.; Ager Iii, J. W.; Gracia, J.; Xu, Z. J. J. Phys. Energy 2021, 3 (3), 031004. doi: 10.1088/2515-7655/abe039

    61. [61]

      Kuemmeth, F.; Ilani, S.; Ralph, D. C.; McEuen, P. L. Nature 2008, 452 (7186), 448. doi: 10.1038/nature06822

    62. [62]

      Chen, R. R.; Sun, Y.; Ong, S. J. H.; Xi, S.; Du, Y.; Liu, C.; Lev, O.; Xu, Z. J. Adv. Mater. 2020, 32 (10), e1907976. doi: 10.1002/adma.201907976

    63. [63]

      Yan, R.; Zhao, Z.; Cheng, M.; Yang, Z.; Cheng, C.; Liu, X.; Yin, B.; Li, S. Angew. Chem. Int. Ed. 2022, 62 (1), e202215414. doi: 10.1002/anie.202215414

    64. [64]

      Lin, L.; Xin, R.; Yuan, M.; Wang, T.; Li, J.; Xu, Y.; Xu, X.; Li, M.; Du, Y.; Wang, J.;et al. ACS Catal. 2023, 13 (2), 1431. doi: 10.1021/acscatal.2c04983

    65. [65]

      Chen, S.; Li, X.; Kao, C. W.; Luo, T.; Chen, K.; Fu, J.; Ma, C.; Li, H.; Li, M.; Chan, T. S.;et al. Angew. Chem. Int. Ed. 2022, 61 (32), e202206233. doi: 10.1002/anie.202206233

    66. [66]

      Nguyen, D. C.; Doan, T. L. L.; Prabhakaran, S.; Tran, D. T.; Kim, D.; Lee, J. H.; Kim, N. H. Nano Energy 2021, 82, 105750. doi: 10.1016/j.nanoen.2021.105750

    67. [67]

      Liu, M. M.; Zhu X. H.; Song, Y. J.; Huang, G. L.; Wei, J. M; Song, X. K.; Xiao, Q.; Zhao, T.; Jiang, W.; Li, X. P;et al. Adv. Funct. Mater. 2023. doi: 10.1002/adfm.202213395

    68. [68]

      Sheng, J.; Sun, S.; Jia, G.; Zhu, S.; Li, Y. ACS Nano 2022, 16 (10), 15994. doi: 10.1021/acsnano.2c03565

    69. [69]

      Zhang, T.; Cheng, F.; Du, J.; Hu, Y.; Chen, J. Adv. Energy Mater. 2015, 5 (1), 1400654. doi: 10.1002/aenm.201400654

    70. [70]

      Wu, G.; Mack, N. H.; Gao, W.; Ma, S.; Zhong, R.; Han, J.; Baldwin, J. K.; Zelenay, P. ACS Nano 2012, 6 (11), 9764. doi: 10.1021/nn303275d

    71. [71]

      Jinli, H.; Wenda, Z.; Xingfang, L.; Yan, D.; Dongquan, P.; Mingyue, C.; Hang, Z.; Ce, H.; Cailei, Y.; Shouguo, W. Chem. Eng. J. 2022, 454, 140279. doi: 10.1016/j.cej.2022.140279

    72. [72]

      Li, Y. B.; Cheng, C. A. Q.; Han, S. H.; Huang, Y. M.; Du, X. W.; Zhang, B.; Yu, Y. F. ACS Energy Lett. 2022, 7 (3), 1187. doi: 10.1021/acsenergylett.2c00207

    73. [73]

      Zhang, Y. Y.; Liang, C.; Wu, J.; Liu, H.; Zhang, B.; Jiang, Z. X.; Li, S. W.; Xu, P. ACS Appl. Energy Mater. 2020, 3 (11), 10303. doi: 10.1021/acsaem.0c02104

    74. [74]

      Chen, Z.; Niu, H.; Ding, J.; Liu, H.; Chen, P. H.; Lu, Y. H.; Lu, Y. R.; Zuo, W.; Han, L.; Guo, Y.;et al. Angew. Chem. Int. Ed. 2021, 60 (48), 25404. doi: 10.1002/anie.202110243

    75. [75]

      Yang, Y.; Zhang, L.; Hu, Z.; Zheng, Y.; Tang, C.; Chen, P.; Wang, R.; Qiu, K.; Mao, J.; Ling, T.;et al. Angew. Chem. Int. Ed. 2020, 59 (11), 4525. doi: 10.1002/anie.201915001

    76. [76]

      Zhang, Z.; Koppensteiner, J.; Schranz, W.; Prabhakaran, D.; Carpenter, M. A. J. Phys. Condens. Mat. 2011, 23 (14), 145401. doi: 10.1088/0953-8984/23/14/145401

    77. [77]

      Ren, X.; Wu, T.; Sun, Y.; Li, Y.; Xian, G.; Liu, X.; Shen, C.; Gracia, J.; Gao, H. J.; Yang, H.;et al. Nat. Commun. 2021, 12 (1), 2608. doi: 10.1038/s41467-021-22865-y

    78. [78]

      Zhou, G.; Wang, P.; Li, H.; Hu, B.; Sun, Y.; Huang, R.; Liu, L. Nat. Commun. 2021, 12 (1), 4827. doi: 10.1038/s41467-021-25095-4

    79. [79]

      Gong, Y. N.; Zhong, W.; Li, Y.; Qiu, Y.; Zheng, L.; Jiang, J.; Jiang, H. L. J. Am. Chem. Soc. 2020, 142 (39), 16723. doi: 10.1021/jacs.0c07206

    80. [80]

      Wu, T.; Ren, X.; Sun, Y.; Sun, S.; Xian, G.; Scherer, G. G.; Fisher, A. C.; Mandler, D.; Ager, J. W.; Grimaud, A.;et al. Nat. Commun. 2021, 12 (1), 3634. doi: 10.1038/s41467-021-23896-1

    81. [81]

      Biz, C.; Fianchini, M.; Gracia, J. ACS Appl. Nano Mater. 2020, 3 (1), 506. doi: 10.1021/acsanm.9b02067

    82. [82]

      Fletcher, S.; Van Dijk, N. J.J. Phys. Chem. C 2016, 120 (46), 26225. doi: 10.1021/acs.jpcc.6b09099

    83. [83]

      Rossmeisl, J.; Qu, Z. W.; Zhu, H.; Kroes, G. J.; Nørskov, J. K. J. Electroanal. Chem. 2007, 607 (1–2), 83. doi: 10.1016/j.jelechem.2006.11.008

    84. [84]

      Koshibae, W.; Maekawa, S. J. Magn. Magn. Mater. 2003, 258, 216. doi: 10.1016/s0304-8853(02)01016-8

    85. [85]

      Gracia, J.; Munarriz, J.; Polo, V.; Sharpe, R.; Jiao, Y.; Niemantsverdriet, J. W. H.; Lim, T. ChemCatChem 2017, 9 (17), 3358. doi: 10.1002/cctc.201700302

    86. [86]

      Gracia, J. Phys. Chem. Chem. Phys. 2017, 19 (31), 20451. doi: 10.1039/c7cp04289b

    87. [87]

      Suntivich, J.; Gasteiger, H. A.; Yabuuchi, N.; Nakanishi, H.; Goodenough, J. B.; Shao-Horn, Y. Nat. Chem. 2011, 3 (7), 546. doi: 10.1038/nchem.1069

    88. [88]

      Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. Science 2011, 334 (6061), 1383. doi: 10.1126/science.1212858

    89. [89]

      Gracia, J. J. Phy. Chem. C 2019, 123 (15), 9967. doi: 10.1021/acs.jpcc.9b01635

    90. [90]

      Garcés-Pineda, F. A.; Blasco-Ahicart, M.; Nieto-Castro, D.; López, N.; Galán-Mascarós, J. R. Nat. Energy 2019, 4 (6), 519. doi: 10.1038/s41560-019-0404-4

    91. [91]

      Halcrow, M. A. Chem. Soc. Rev. 2012, 42 (4), 1784. doi: 10.1039/c2cs35253b

    92. [92]

      Bersuker, I. B. Chem. Rev. 2020, 121 (3), 1463. doi: 10.1021/acs.chemrev.0c00718

    93. [93]

      Biz, C.; Fianchini, M.; Gracia, J. ACS Catal. 2021, 11 (22), 14249. doi: 10.1021/acscatal.1c03135

    94. [94]

      Sun, Y.; Sun, S.; Yang, H.; Xi, S.; Gracia, J.; Xu, Z. J. Adv. Mater. 2020, 32 (39), e2003297. doi: 10.1002/adma.202003297

    95. [95]

      Ulissi, Z. W.; Tang, M. T.; Xiao, J. P.; Liu, X. Y.; Torelli, D. A.; Karamad, M.; Cummins, K.; Hahn, C.; Lewis, N. S.; Jaramillo, T. F.;et al. ACS Catal. 2017, 7 (10), 6600. doi: 10.1021/acscatal.7b01648

    96. [96]

      Li, Z.; Zhuang, Z.; Lv, F.; Zhu, H.; Zhou, L.; Luo, M.; Zhu, J.; Lang, Z.; Feng, S.; Chen, W.;et al. Adv. Mater. 2018, 30 (43), e1803220. doi: 10.1002/adma.201803220

    97. [97]

      Yang, Q.; Jia, Y.; Wei, F.; Zhuang, L.; Yang, D.; Liu, J.; Wang, X.; Lin, S.; Yuan, P.; Yao, X. Angew. Chem. Int. Ed. 2020, 59 (15), 6122. doi: 10.1002/anie.202000324

    98. [98]

      Tian, Y.; Cao, H.; Yang, H.; Yao, W.; Wang, J.; Qiao, Z.; Cheetham, A. K. Angew. Chem. Int. Ed. 2023. doi: 10.1002/anie.202215295

    99. [99]

      Laing, M. J. Chem. Educ. 1989, 66 (6), 453. doi: 10.1021/ed066p453

    100. [100]

      Paterson, M. J.; Christiansen, O.; Jensen, F.; Ogilby, P. R. Photochem. Photobiol. 2006, 82 (5), 1136. doi: 10.1562/2006-03-17-ir-851

    101. [101]

      Huang, B.; Sun, Z.; Sun, G. eScience 2022, 2 (3), 243. doi: 10.1016/j.esci.2022.04.006

    102. [102]

      Yang, G.; Zhu, J.; Yuan, P.; Hu, Y.; Qu, G.; Lu, B. A.; Xue, X.; Yin, H.; Cheng, W.; Cheng, J.;et al. Nat. Commun. 2021, 12 (1), 1734. doi: 10.1038/s41467-021-21919-5

    103. [103]

      He, T.; Chen, Y.; Liu, Q.; Lu, B.; Song, X.; Liu, H.; Liu, M.; Liu, Y. N.; Zhang, Y.; Ouyang, X.;et al. Angew. Chem. Int. Ed. 2022, 61, e202201007. doi: 10.1002/anie.202201007

    104. [104]

      Dongping, X.; Pengfei, Y.; Su, J.; Yifan, W.; Ying, Z.; Chung-Li, D.; Wenfu, Y.; Shichun, M.; Jia-Nan, Z. Nano Energy 2022, 105, 108020. doi: 10.1016/j.nanoen.2022.108020

    105. [105]

      Yan, J.; Wang, Y.; Zhang, Y.; Xia, S.; Yu, J.; Ding, B. Adv. Mater. 2020, 33 (5), e2007525. doi: 10.1002/adma.202007525

    106. [106]

      Liu, S.; Li, C.; Zachman, M. J.; Zeng, Y.; Yu, H.; Li, B.; Wang, M.; Braaten, J.; Liu, J.; Meyer, H. M.;et al. Nat. Energy 2022, 7 (7), 652. doi: 10.1038/s41560-022-01062-1

    107. [107]

      Xie, X.; He, C.; Li, B.; He, Y.; Cullen, D. A.; Wegener, E. C.; Kropf, A. J.; Martinez, U.; Cheng, Y.; Engelhard, M. H.;et al. Nat. Catal. 2020, 3 (12), 1044. doi: 10.1038/s41929-020-00546-1

    108. [108]

      Li, J.; Sougrati, M. T.; Zitolo, A.; Ablett, J. M.; Oğuz, I. C.; Mineva, T.; Matanovic, I.; Atanassov, P.; Huang, Y.; Zenyuk, I.;et al. Nat. Catal. 2020, 4 (1), 10. doi: 10.1038/s41929-020-00545-2

    109. [109]

      Chen, Z.; Ju, M.; Sun, M.; Jin, L.; Cai, R.; Wang, Z.; Dong, L.; Peng, L.; Long, X.; Huang, B.;et al. Angew. Chem. Int. Ed. 2021, 60 (17), 9699. doi: 10.1002/anie.202016064

    110. [110]

      Feng, X.; Jiao, Q.; Chen, W.; Dang, Y.; Dai, Z.; Suib, S. L.; Zhang, J.; Zhao, Y.; Li, H.; Feng, C. Appl. Catal. B 2021, 286, 119869. doi: 10.1016/j.apcatb.2020.119869

    111. [111]

      Sun, Z.; Lin, L.; He, J.; Ding, D.; Wang, T.; Li, J.; Li, M.; Liu, Y.; Li, Y.; Yuan, M.;et al. J. Am. Chem. Soc. 2022, 144 (18), 8204. doi: 10.1021/jacs.2c01153

    112. [112]

      Kang, J. X.; Qiu, X. Y.; Hu, Q.; Zhong, J.; Gao, X.; Huang, R.; Wang, C. Z; Liu, L. M.; Duan, X. F; Guo, L. Nat. Catal. 2021, 4 (12), 1050. doi: 10.1038/s41929-021-00715-w

    113. [113]

      Wang, X.; Tuo, Y.; Zhou, Y.; Wang, D.; Wang, S.; Zhang, J. Chem. Eng. J. 2021, 403, 126297. doi: 10.1016/j.cej.2020.126297

    114. [114]

      Tao, H. B.; Fang, L.; Chen, J.; Yang, H. B.; Gao, J.; Miao, J.; Chen, S.; Liu, B. J. Am. Chem. Soc. 2016, 138 (31), 9978. doi: 10.1021/jacs.6b05398

    115. [115]

      Sun, Y.; Ren, X.; Sun, S.; Liu, Z.; Xi, S.; Xu, Z. J. Angew. Chem. Int. Ed. 2021, 60 (26), 14536. doi: 10.1002/anie.202102452

    116. [116]

      Liu, Y.; Ye, C.; Zhao, S.-N.; Wu, Y.; Liu, C.; Huang, J.; Xue, L.; Sun, J.; Zhang, W.; Wang, X.;et al. Nano Energy 2022, 99, 107344. doi: 10.1016/j.nanoen.2022.107344

    117. [117]

      Zhang, J.; Geng, S.; Li, R.; Zhang, X.; Zhou, Y.; Yu, T.; Wang, Y.; Song, S.; Shao, Z. Chem. Eng. J. 2021, 420, 130492. doi: 10.1016/j.cej.2021.130492

    118. [118]

      Qian, S.-J.; Cao, H.; Chen, J.-W.; Chen, J.-C.; Wang, Y.-G.; Li, J. ACS Catal. 2022, 12 (18), 11530. doi: 10.1021/acscatal.2c03186

    119. [119]

      Liu, C.; Hao, D.; Ye, J.; Ye, S.; Zhou, F.; Xie, H.; Qin, G.; Xu, J.; Liu, J.; Li, S.;et al. Adv. Energy Mater. 2023, 13 (8), 2204126. doi: 10.1002/aenm.202204126

    120. [120]

      Wang, Y.; Cheng, W.; Yuan, P.; Yang, G.; Mu, S.; Liang, J.; Xia, H.; Guo, K.; Liu, M.; Zhao, S.;et al. Adv. Sci. 2021, 8 (20), 2102915. doi: 10.1002/advs.202102915

    121. [121]

      Song, G.; Gao, R.; Zhao, Z.; Zhang, Y.; Tan, H.; Li, H.; Wang, D.; Sun, Z.; Feng, M. Appl. Catal. B 2022, 301, 120809. doi: 10.1016/j.apcatb.2021.120809

    122. [122]

      Zhang, Y.; Zhang, Q.; Liu, D.-X.; Wen, Z.; Yao, J.-X.; Shi, M.-M.; Zhu, Y.-F.; Yan, J.-M.; Jiang, Q. Appl. Catal. B 2021, 298, 120592. doi: 10.1016/j.apcatb.2021.120592

    123. [123]

      Bui, T. S.; Lovell, E. C.; Daiyan, R.; Amal, R. Adv. Mater. 2023. doi: 10.1002/adma.202205814

    124. [124]

      Zhang, W.; Hu, Y.; Ma, L.; Zhu, G.; Wang, Y.; Xue, X.; Chen, R.; Yang, S.; Jin, Z. Adv. Sci. 2017, 5 (1), 1700275. doi: 10.1002/advs.201700275

    125. [125]

      Luo, T.; Liu, K.; Fu, J.; Chen, S.; Li, H.; Hu, J.; Liu, M. J. Energy Chem. 2022, 70, 219. doi: 10.1016/j.jechem.2022.02.050

    126. [126]

      Wang, J.; Wang, G.; Zhang, J.; Wang, Y.; Wu, H.; Zheng, X.; Ding, J.; Han, X.; Deng, Y.; Hu, W. Angew. Chem. Int. Ed. 2021, 60 (14), 7602. doi: 10.1002/anie.202016022

    127. [127]

      Wang, J.; Huang, Y.-C.; Wang, Y.; Deng, H.; Shi, Y.; Wei, D.; Li, M.; Dong, C.-L.; Jin, H.; Mao, S. S.;et al. ACS Catal. 2023, 13 (4), 2374. doi: 10.1021/acscatal.2c05249

    128. [128]

      Sun, M. Z.; Wong, H. H; Wu, T.; Lu, Q. Y.; Lu, L.; Chan, C. H.; Chen, B.; Dougherty, A. W.; Huang, B. L. Adv. Energy Mater. 2022, 13 (7), 2203858. doi: 10.1002/aenm.202203858

    129. [129]

      Zhu, Y.; Yang, X.; Peng, C.; Priest, C.; Mei, Y.; Wu, G. Small 2021, 17 (16), e2005148. doi: 10.1002/smll.202005148

    130. [130]

      Ren, M.; Guo, X.; Huang, S. Chem. Eng. J. 2022, 433, 134270. doi: 10.1016/j.cej.2021.134270

    131. [131]

      Cao, S.; Wei, S.; Wei, X.; Zhou, S.; Chen, H.; Hu, Y.; Wang, Z.; Liu, S.; Guo, W.; Lu, X. Small 2021, 17 (29), 2100949. doi: 10.1002/smll.202100949

    132. [132]

      Zhu, J.; Xiao, M.; Ren, D.; Gao, R.; Liu, X.; Zhang, Z.; Luo, D.; Xing, W.; Su, D.; Yu, A.;et al. J. Am. Chem. Soc. 2022, 144 (22), 9661. doi: 10.1021/jacs.2c00937

    133. [133]

      Zhang, Y.; Wang, J.-Z.; Li, K.; Shi, M.-M.; Wen, Z.; Jiao, M.-G.; Bao, D. J. Mater. Chem. A 2022, 10 (6), 2819. doi: 10.1039/d1ta10534e

    134. [134]

      Phokha, S.; Pinitsoontorn, S.; Maensiri, S. Nano-Micro. Lett. 2013, 5 (4), 223. doi: 10.1007/bf03353753

    135. [135]

      Zhou, G.; Wang, P.; Hu, B.; Shen, X.; Liu, C.; Tao, W.; Huang, P.; Liu, L. Nat. Commun. 2022, 13 (1), 4106. doi: 10.1038/s41467-022-31874-4

    136. [136]

      Zhang, Y.; Guo, P.; Li, S.; Sun, J.; Wang, W.; Song, B.; Yang, X.; Wang, X.; Jiang, Z.; Wu, G.;et al. J. Mater. Chem. A 2022, 10 (4), 1760. doi: 10.1039/d1ta09444k

    137. [137]

      Gong, X.; Jiang, Z.; Zeng, W.; Hu, C.; Luo, X.; Lei, W.; Yuan, C. Nano Lett. 2022, 22 (23), 9411. doi: 10.1021/acs.nanolett.2c03359

    138. [138]

      Bruckner, A. Chem. Soc. Rev. 2010, 39 (12), 4673. doi: 10.1039/b919541f

    139. [139]

      Seifert, T. S.; Kovarik, S.; Juraschek, D. M.; Spaldin, N. A.; Gambardella, P.; Stepanow, S. Sci. Adv. 2020, 6 (40), eabc5511. doi: 10.1126/sciadv.abc5511

    140. [140]

      Pilbrow, J. R.; Lowrey, M. R. Rep. Prog. Phys. 1980, 43 (4), 433. doi: 10.1088/0034-4885/43/4/002

    141. [141]

      Klasovsky, F.; Hohmeyer, J.; Brückner, A.; Bonifer, M.; Arras, J.; Steffan, M.; Lucas, M.; Radnik, J.; Roth, C.; Claus, P.J. Phys. Chem. C 2008, 112 (49), 19555. doi: 10.1021/jp805970e

    142. [142]

      Wang, Z.; Shen, S.; Lin, Z.; Tao, W.; Zhang, Q.; Meng, F.; Gu, L.; Zhong, W. Adv. Funct. Mater. 2022, 32 (18), 2112832. doi: 10.1002/adfm.202112832

    143. [143]

      Li, X.; Zhu, K.; Pang, J.; Tian, M.; Liu, J.; Rykov, A. I.; Zheng, M.; Wang, X.; Zhu, X.; Huang, Y.;et al. Appl. Catal. B 2017, 224, 518. doi: 10.1016/j.apcatb.2017.11.004

    144. [144]

      Cini, A.; Mannini, M.; Totti, F.; Fittipaldi, M.; Spina, G.; Chumakov, A.; Rüffer, R.; Cornia, A.; Sessoli, R. Nat. Commun. 2018, 9 (1), 480. doi: 10.1038/s41467-018-02840-w

    145. [145]

      Kramm, U. I.; Ni, L.; Wagner, S. Adv. Mater. 2019, 31 (31), e1805623. doi: 10.1002/adma.201805623

    146. [146]

      Liu, W.; Zhang, L.; Liu, X.; Liu, X.; Yang, X.; Miao, S.; Wang, W.; Wang, A.; Zhang, T. J. Am. Chem. Soc. 2017, 139 (31), 10790. doi: 10.1021/jacs.7b05130

    147. [147]

      Pollock, C. J.; Delgado-Jaime, M. U.; Atanasov, M.; Neese, F.; DeBeer, S. J. Am. Chem. Soc. 2014, 136 (26), 9453. doi: 10.1021/ja504182n

    148. [148]

      Glatzel, P.; Bergmann, U. Coordin. Chem. Rev. 2005, 249 (1–2), 65. doi: 10.1016/j.ccr.2004.04.011

    149. [149]

      Cutsail Iii, G. E.; DeBeer, S. ACS Catal. 2022, 12 (10), 5864. doi: 10.1021/acscatal.2c01016

    150. [150]

      Hocking, R. K.; Wasinger, E. C.; de Groot, F. M. F.; Hodgson, K. O.; Hedman, B.; Solomon, E. I. J. Am. Chem. Soc. 2006, 128 (32), 10442. doi: 10.1021/ja061802i

    151. [151]

      Anisimov, V. I.; Zaanen, J.; Andersen, O. K. Phys. Rev. B Condens. Matter. 1991, 44 (3), 943. doi: 10.1103/physrevb.44.943

    152. [152]

      Hu, Z.; Wu, H.; Haverkort, M. W.; Hsieh, H. H.; Lin, H. J.; Lorenz, T.; Baier, J.; Reichl, A.; Bonn, I.; Felser, C.;et al. Phys. Rev. Lett. 2004, 92 (20), 207402. doi: 10.1103/PhysRevLett.92.207402

    153. [153]

      Saveleva, V. A.; Ebner, K.; Ni, L.; Smolentsev, G.; Klose, D.; Zitolo, A.; Marelli, E.; Li, J.; Medarde, M.; Safonova, O. V.;et al. Angew. Chem. Int. Ed. 2021, 60 (21), 11707. doi: 10.1002/anie.202016951

    154. [154]

      Ringe, S.; Hörmann, N. G.; Oberhofer, H.; Reuter, K. Chem. Rev. 2021, 122 (12), 10777. doi: 10.1021/acs.chemrev.1c00675

    155. [155]

      Szuromi, P. Science 2014, 345 (6193), 175. doi: 10.1126/science.345.6193.175-m

    156. [156]

      Wang, Y.; Li, X. P.; Zhang, M. M.; Zhang, J. F.; Chen, Z. L.; Zheng, X. R.; Tian, Z. L.; Zhao, N. Q.; Han, X. P.; Zaghib, K. R.;et al. Adv. Mater. 2022, 34 (13), 2107053. doi: 10.1002/adma.202107053

    157. [157]

      He, F.; Zhao, Y.; Yang, X.; Zheng, S.; Yang, B.; Li, Z.; Kuang, Y.; Zhang, Q.; Lei, L.; Qiu, M.;et al. ACS Nano 2022, 16 (6), 9523. doi: 10.1021/acsnano.2c02685

    158. [158]

      Sun, F.; Li, F.; Tang, Q. J. Phys. Chem. C 2022, 126 (31), 13168. doi: 10.1021/acs.jpcc.2c03518

  • 加载中
计量
  • PDF下载量:  69
  • 文章访问数:  2269
  • HTML全文浏览量:  470
文章相关
  • 发布日期:  2023-12-15
  • 收稿日期:  2023-02-27
  • 接受日期:  2023-03-20
  • 修回日期:  2023-03-20
  • 网络出版日期:  2023-03-28
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章