Strategies to Improve the Energy Density of Non-Aqueous Organic Redox Flow Batteries

Guangtao Cong Yi-Chun Lu

Citation:  Guangtao Cong, Yi-Chun Lu. Strategies to Improve the Energy Density of Non-Aqueous Organic Redox Flow Batteries[J]. Acta Physico-Chimica Sinica, 2022, 38(6): 210600. doi: 10.3866/PKU.WHXB202106008 shu

提升液流电池能量密度的策略

    作者简介: Guangtao Cong received his Ph.D.degree in Mechanical and Automation Engineering from The Chinese University of Hong Kong (CUHK) in 2018. Dr.Cong worked as a research associate under the supervision of Prof.Yi-Chun Lu at CUHK before he joined the College of Chemistry and Environmental Engineering at Shenzhen University as an Assistant Professor.Dr.Cong's research interests focus on organic electrodes.;
    Prof. Yi-Chun Lu received her B.S. degree in Materials Science & Engineering from National Tsing Hua University, Taiwan in 2007 and earned her Ph.D. degree in Materials Science & Engineering from Massachusetts Institute of Technology in 2012. Prof. Lu worked as a Postdoctoral Fellow in the Department of Chemistry at the Technische Universität München, Germany in 2013. She is currently an Associate Professor of Mechanical and Automation Engineering at The Chinese University of Hong Kong. Prof. Lu’s research interest centers on fundamental redox chemistry and developing functional materials for clean energy storage and conversion;
    通讯作者: 从广涛, gtcong@szu.edu.cn
    卢怡君, yichunlu@mae.cuhk.edu.hk
摘要: 液流电池因为具有高储能效率,低成本,以及可解耦的能源储存和功率输出设计,被广泛认为是适用于大型储能的首选技术。但是长期以来,液流电池在电网中的大规模部署一直受限于现有的金属基活性材料的高成本和较低的储能密度。因其潜在的低成本,丰富的原材料来源,高度可调的分子结构,具有氧化还原活性的有机分子作为潜在的液流电池活性材料,受到越来越多的关注。本文首先介绍了液流电池的工作机制,以提升非水系有机液流电池的储能密度的策略为重点,总结了非水系液流电池中有机活性材料的研究进展。并讨论了这些策略存在的问题和未来的发展方向。

English

    1. [1]

      Soloveichik, G. L. Chem. Rev. 2015, 115, 11533. doi: 10.1021/cr500720t

    2. [2]

      Winsberg, J.; Hagemann, T.; Janoschka, T.; Hager, M. D.; Schubert, U. S. Angew. Chem. Int. Ed. 2017, 56, 686. doi: 10.1002/anie.201604925

    3. [3]

      Wei, X.; Pan, W.; Duan, W.; Hollas, A.; Yang, Z.; Li, B.; Nie, Z.; Liu, J.; Reed, D.; Wang, W.; et al. ACS Energy Lett. 2017, 2, 2187. doi: 10.1021/acsenergylett.7b00650

    4. [4]

      Muench, S.; Wild, A.; Friebe, C.; Häupler, B.; Janoschka, T.; Schubert, U. S. Chem. Rev. 2016, 116, 9438. doi: 10.1021/acs.chemrev.6b00070

    5. [5]

      Chen, H.; Cong, G.; Lu, Y. C. J. Energy Chem. 2018, 27, 1304. doi: 10.1016/j.jechem.2018.02.009

    6. [6]

      Yao, Y.; Lei, J.; Shi, Y.; Ai, F.; Lu, Y. C. Nat. Energy 2021, 6, 582. doi: 10.1038/s41560-020-00772-8

    7. [7]

      Li, Z.; Lu, Y. C. Nat. Energy 2021, 6, 517. doi: 10.1038/s41560-021-00804-x

    8. [8]

      Wang, C.; Li, X.; Yu, B.; Wang, Y.; Yang, Z.; Wang, H.; Lin, H.; Ma, J.; Li, G.; Jin, Z. ACS Energy Lett. 2020, 5, 411. doi: 10.1021/acsenergylett.9b02676

    9. [9]

      Wang, C.; Yang, Z.; Wang, Y.; Zhao, P.; Yan, W.; Zhu, G.; Ma, L.; Yu, B.; Wang, L.; Li, G.; et al. ACS Energy Lett. 2018, 3, 2404. doi: 10.1021/acsenergylett.8b01296

    10. [10]

      Wang, C.; Yu, B.; Liu, Y.; Wang, H.; Zhang, Z.; Xie, C.; Li, X.; Zhang, H.; Jin, Z. Energy Stor. Mater. 2021, 36, 417. doi: 10.1016/j.ensm.2021.01.019

    11. [11]

      Kwabi, D. G.; Ji, Y.; Aziz, M. J. Chem. Rev. 2020, 120, 6467. doi: 10.1021/acs.chemrev.9b00599

    12. [12]

      Singh, V.; Kim, S.; Kang, J.; Byon, H. R. Nano Res. 2019, 12, 1988. doi: 10.1007/s12274-019-2355-2

    13. [13]

      Gentil, S.; Reynard, D.; Girault, H. H. Curr. Opin. Electrochem. 2020, 21, 7. doi: 10.1016/j.coelec.2019.12.006

    14. [14]

      Polcari, D.; Dauphin-Ducharme, P.; Mauzeroll, J. Chem. Rev. 2016, 116, 13234. doi: 10.1021/acs.chemrev.6b00067

    15. [15]

      Remya, G. S.; Suresh, C. H. Phys. Chem. Chem. Phys. 2016, 18, 20615. doi: 10.1039/C6CP02936A

    16. [16]

      McMurry, J. E. Organic Chemistry, 8th ed.; Cengage Learning: Boston, 2012.

    17. [17]

      Williams, D. L.; Byrne, J. J.; Driscoll, J. S. J. Electrochem. Soc. 1969, 116, 2. doi: 10.1149/1.2411755

    18. [18]

      Wei, X.; Xu, W.; Huang, J.; Zhang, L.; Walter, E.; Lawrence, C.; Vijayakumar, M.; Henderson, W. A.; Liu, T.; Cosimbescu, L.; et al. Angew. Chem. Int. Ed. 2015, 54, 8684. doi: 10.1002/anie.201501443

    19. [19]

      Xing, X.; Huo, Y.; Wang, X.; Zhao, Y.; Li, Y. Int. J. Hydrogen Energy 2017, 42, 17488. doi: 10.1016/j.ijhydene.2017.03.034

    20. [20]

      Li, Z.; Li, S.; Liu, S.; Huang, K.; Fang, D.; Wang, F.; Peng, S. Electrochem. Solid-State Lett. 2011, 14, A171. doi: 10.1149/2.012112esl

    21. [21]

      Huang, J.; Yang, Z.; Vijayakumar, M.; Duan, W.; Hollas, A.; Pan, B.; Wang, W.; Wei, X.; Zhang, L. Adv. Sustain. Syst. 2018, 2, 1700131. doi: 10.1002/adsu.201700131

    22. [22]

      Sevov, C. S.; Brooner, R. E. M.; Chénard, E.; Assary, R. S.; Moore, J. S.; Rodríguez-López, J.; Sanford, M. S. J. Am. Chem. Soc. 2015, 137, 14465. doi: 10.1021/jacs.5b09572

    23. [23]

      Wei, X.; Duan, W.; Huang, J.; Zhang, L.; Li, B.; Reed, D.; Xu, W.; Sprenkle, V.; Wang, W. ACS Energy Lett. 2016, 1, 705. doi: 10.1021/acsenergylett.6b00255

    24. [24]

      Xing, X.; Liu, Q.; Li, J.; Han, Z.; Wang, B.; Lemmon, J. P. Chem. Commun. 2019, 55, 14214. doi: 10.1039/C9CC07937H

    25. [25]

      Duan, W.; Huang, J.; Kowalski, J. A.; Shkrob, I. A.; Vijayakumar, M.; Walter, E.; Pan, B.; Yang, Z.; Milshtein, J. D.; Li, B.; et al. ACS Energy Lett. 2017, 2, 1156. doi: 10.1021/acsenergylett.7b00261

    26. [26]

      McClelland, B. J. Chem. Rev. 1964, 64, 301. doi: 10.1021/cr60229a005

    27. [27]

      Holy, N. L. Chem. Rev. 1974, 74, 243. doi: 10.1021/cr60288a005

    28. [28]

      Gong, K.; Fang, Q.; Gu, S.; Li, S. F. Y.; Yan, Y. Energy Environ. Sci. 2015, 8, 3515. doi: 10.1039/C5EE02341F

    29. [29]

      Yu, J.; Hu, Y. S.; Pan, F.; Zhang, Z.; Wang, Q.; Li, H.; Huang, X.; Chen, L. Nat. Commun. 2017, 8, 14629. doi: 10.1038/ncomms14629

    30. [30]

      Wang, G.; Huang, B.; Liu, D.; Zheng, D.; Harris, J.; Xue, J.; Qu, D. J. Mater. Chem. A 2018, 6, 13286. doi: 10.1039/C8TA03221A

    31. [31]

      Cong, G.; Wang, W.; Lai, N. C.; Liang, Z.; Lu, Y. C. Nat. Mater. 2019, 18, 390. doi: 10.1038/s41563-019-0286-7

    32. [32]

      Zhang, L.; Zhang, Z.; Redfern, P. C.; Curtiss, L. A.; Amine, K. Energy Environ. Sci. 2012, 5, 8204. doi: 10.1039/C2EE21977H

    33. [33]

      Huang, J.; Cheng, L.; Assary, R. S.; Wang, P.; Xue, Z.; Burrell, A. K.; Curtiss, L. A.; Zhang, L. Adv. Energy Mater. 2015, 5, 1401782. doi: 10.1002/aenm.201401782

    34. [34]

      Sevov, C. S.; Samaroo, S. K.; Sanford, M. S. Adv. Energy Mater. 2017, 7, 1602027. doi: 10.1002/aenm.201602027

    35. [35]

      Yan, Y.; Robinson, S. G.; Sigman, M. S.; Sanford, M. S. J. Am. Chem. Soc. 2019, 141, 15301. doi: 10.1021/jacs.9b07345

    36. [36]

      Robinson, S. G.; Yan, Y.; Hendriks, K. H.; Sanford, M. S.; Sigman, M. S. J. Am. Chem. Soc. 2019, 141, 10171. doi: 10.1021/jacs.9b04270

    37. [37]

      Shrestha, A.; Hendriks, K. H.; Sigman, M. S.; Minteer, S. D.; Sanford, M. S. Chem. - A Eur. J. 2020, 26, 5369. doi: 10.1002/chem.202000749

    38. [38]

      Cong, G.; Zhou, Y.; Li, Z.; Lu, Y. C. ACS Energy Lett. 2017, 2, 869. doi: 10.1021/acsenergylett.7b00115

    39. [39]

      Wang, Y.; Zhou, H. Energy Environ. Sci. 2016, 9, 2267. doi: 10.1039/C6EE00902F

    40. [40]

      Zhang, C.; Zhang, L.; Ding, Y.; Guo, X.; Yu, G. ACS Energy Lett. 2018, 3, 2875. doi: 10.1021/acsenergylett.8b01899

    41. [41]

      Zhang, C.; Qian, Y.; Ding, Y.; Zhang, L.; Guo, X.; Zhao, Y.; Yu, G. Angew. Chem. Int. Ed. 2019, 58, 7045. doi: 10.1002/anie.201902433

    42. [42]

      Goeltz, J. C.; Matsushima, L. N. Chem. Commun. 2017, 53, 9983. doi: 10.1039/C7CC04837H

    43. [43]

      Sinclair, N. S.; Poe, D.; Savinell, R. F.; Maginn, E. J.; Wainright, J. S. J. Electrochem. Soc. 2021, 168, 020527. doi: 10.1149/1945-7111/abe28a

    44. [44]

      Zhang, C.; Chen, H.; Qian, Y.; Dai, G.; Zhao, Y.; Yu, G. Adv. Mater. 2021, 33, 2008560. doi: 10.1002/adma.202008560

    45. [45]

      Zhang, C.; Niu, Z.; Ding, Y.; Zhang, L.; Zhou, Y.; Guo, X.; Zhang, X.; Zhao, Y.; Yu, G. Chem 2018, 4, 2814. doi: 10.1016/j.chempr.2018.08.024

    46. [46]

      Takechi, K.; Kato, Y.; Hase, Y. Adv. Mater. 2015, 27, 2501. doi: 10.1002/adma.201405840

    47. [47]

      Cong, G.; Lu, Y. C. Chem 2018, 4, 2732. doi: 10.1016/j.chempr.2018.11.018

    48. [48]

      Duduta, M.; Ho, B.; Wood, V. C.; Limthongkul, P.; Brunini, V. E.; Carter, W. C.; Chiang, Y. M. Adv. Energy Mater. 2011, 1, 511. doi: 10.1002/aenm.201100152

    49. [49]

      Chen, H.; Zou, Q.; Liang, Z.; Liu, H.; Li, Q.; Lu, Y. C. Nat. Commun. 2015, 6, 5877. doi: 10.1038/ncomms6877

    50. [50]

      Chen, H.; Lu, Y. C. Adv. Energy Mater. 2016, 6, 1502183. doi: 10.1002/aenm.201502183

    51. [51]

      Chen, H.; Zhou, Y.; Lu, Y. C. ACS Energy Lett. 2018, 3, 1991. doi: 10.1021/acsenergylett.8b01257

    52. [52]

      Zhang, X.; Zhang, P.; Chen, H. ChemSusChem 2021, 14, 1913. doi: 10.1002/cssc.202100094

    53. [53]

      Wang, Q.; Zakeeruddin, S. M.; Wang, D.; Exnar, I.; Grätzel, M. Angew. Chem. Int. Ed. 2006, 45, 8197. doi: 10.1002/anie.200602891

    54. [54]

      Jia, C.; Pan, F.; Zhu, Y. G.; Huang, Q.; Lu, L.; Wang, Q. Sci. Adv. 2015, 1, e1500886. doi: 10.1126/sciadv.1500886

    55. [55]

      Huang, Q.; Yang, J.; Ng, C. B.; Jia, C.; Wang, Q. Energy Environ. Sci. 2016, 9, 917. doi: 10.1039/C5EE03764F

    56. [56]

      Yan, R.; Wang, Q. Adv. Mater. 2018, 30, 1802406. doi: 10.1002/adma.201802406

    57. [57]

      Yu, J.; Fan, L.; Yan, R.; Zhou, M.; Wang, Q. ACS Energy Lett. 2018, 3, 2314. doi: 10.1021/acsenergylett.8b01420

    58. [58]

      Chen, Y.; Zhou, M.; Xia, Y.; Wang, X.; Liu, Y.; Yao, Y.; Zhang, H.; Li, Y.; Lu, S.; Qin, W.; et al. Joule 2019, 3, 2255. doi: 10.1016/j.joule.2019.06.007

    59. [59]

      Cheng, Y.; Wang, X.; Huang, S.; Samarakoon, W.; Xi, S.; Ji, Y.; Zhang, H.; Zhang, F.; Du, Y.; Feng, Z.; et al. ACS Energy Lett. 2019, 4, 3028. doi: 10.1021/acsenergylett.9b01939

    60. [60]

      Zhou, M.; Chen, Y.; Salla, M.; Zhang, H.; Wang, X.; Mothe, S. R.; Wang, Q. Angew. Chem. Int. Ed. 2020, 59, 14286. doi: 10.1002/anie.202004603

    61. [61]

      Huang, Q.; Li, H.; Grätzel, M.; Wang, Q. Phys. Chem. Chem. Phys. 2013, 15, 1793. doi: 10.1039/C2CP44466F

    62. [62]

      Zhou, M.; Huang, Q.; Pham Truong, T. N.; Ghilane, J.; Zhu, Y. G.; Jia, C.; Yan, R.; Fan, L.; Randriamahazaka, H.; Wang, Q. Chem 2017, 3, 1036. doi: 10.1016/j.chempr.2017.10.003

    63. [63]

      Kwon, G.; Lee, S.; Hwang, J.; Shim, H. S.; Lee, B.; Lee, M. H.; Ko, Y.; Jung, S. K.; Ku, K.; Hong, J.; Kang, K. Joule 2018, 2, 1771. doi: 10.1016/j.joule.2018.05.014

    64. [64]

      Li, Z.; Lu, Y. C. Chem 2018, 4, 2020. doi: 10.1016/j.chempr.2018.08.032

    65. [65]

      Kwon, G.; Lee, K.; Lee, M. H.; Lee, B.; Lee, S.; Jung, S. K.; Ku, K.; Kim, J.; Park, S. Y.; Kwon, J. E.; et al. Chem 2019, 5, 2642. doi: 10.1016/j.chempr.2019.07.006

    66. [66]

      Ham, Y.; Ri, V.; Kim, J.; Yoon, Y.; Lee, J.; Kang, K.; An, K. S.; Kim, C.; Jeon, S. Nano Res. 2021, 14, 1382. doi: 10.1007/s12274-020-3187-9

    67. [67]

      Lee, M.; Hong, J.; Lee, B.; Ku, K.; Lee, S.; Park, C. B.; Kang, K. Green Chem. 2017, 19, 2980. doi: 10.1039/C7GC00849J

    68. [68]

      Lee, S.; Lee, K.; Ku, K.; Hong, J.; Park, S. Y.; Kwon, J. E.; Kang, K. Adv. Energy Mater. 2020, 10, 2001635. doi: 10.1002/aenm.202001635

    69. [69]

      Attanayake, N. H.; Kowalski, J. A.; Greco, K. V.; Casselman, M. D.; Milshtein, J. D.; Chapman, S. J.; Parkin, S. R.; Brushett, F. R.; Odom, S. A. Chem. Mater. 2019, 31, 4353. doi: 10.1021/acs.chemmater.8b04770

    70. [70]

      Kowalski, J. A.; Casselman, M. D.; Kaur, A. P.; Milshtein, J. D.; Elliott, C. F.; Modekrutti, S.; Attanayake, N. H.; Zhang, N.; Parkin, S. R.; Risko, C.; et al. J. Mater. Chem. A 2017, 5, 24371. doi: 10.1039/C7TA05883G

  • 加载中
计量
  • PDF下载量:  58
  • 文章访问数:  1472
  • HTML全文浏览量:  357
文章相关
  • 发布日期:  2022-06-15
  • 收稿日期:  2021-06-02
  • 接受日期:  2021-07-01
  • 修回日期:  2021-06-30
  • 网络出版日期:  2021-07-07
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章