过渡金属氮化物的活性起源、合成方法及电催化应用

秦睿 王鹏彦 林灿 曹菲 张金咏 陈磊 木士春

引用本文: 秦睿, 王鹏彦, 林灿, 曹菲, 张金咏, 陈磊, 木士春. 过渡金属氮化物的活性起源、合成方法及电催化应用[J]. 物理化学学报, 2021, 37(7): 200909. doi: 10.3866/PKU.WHXB202009099 shu
Citation:  Qin Rui, Wang Pengyan, Lin Can, Cao Fei, Zhang Jinyong, Chen Lei, Mu Shichun. Transition Metal Nitrides: Activity Origin, Synthesis and Electrocatalytic Applications[J]. Acta Physico-Chimica Sinica, 2021, 37(7): 200909. doi: 10.3866/PKU.WHXB202009099 shu

过渡金属氮化物的活性起源、合成方法及电催化应用

    作者简介:




    陈磊,1968年生。2006年于武汉理工大学获计算机科学与技术学士学位。现工作于武汉理工大学材料复合新技术国家重点实验室,为高级实验师。主要从事燃料电池及电化学产氢技术等研发工作;
    木士春,1973年生。2001年于中国科学院中国科学院广州地球化学研究所获理学博士学位。现为武汉理工大学学科首席教授。目前主要从事质子交换膜燃料电池、电化学产氢催化剂及器件等研究工作;
    通讯作者: 陈磊, CHL0588@163.com; 木士春, msc@whut.edu.cn
  • 基金项目:

    国家自然科学基金(51672204, 22075223)资助

摘要: 过渡金属电催化剂因其优良的电催化性能、低廉的成本,以及在电解水、燃料电池、锌空电池等领域展现出极大的应用潜力,逐渐成为人们的研究热点。其中,过渡金属氮化物(Transition Metal Nitrides,TMNs)因氮化过程能使金属的d带收缩变窄,填充态发生改变,从而调节金属-氢的键能,达到提高导电性及催化活性的目的,近来备受学者们的关注。因此,本文综述了TMNs纳米电催化剂的最新研究进展,包括借助d带理论讨论了氮元素对其结构及活性的影响;评述了TMNs的物理、化学等合成方法及掺杂、复合等改性方法;列举了其在析氢反应、析氧反应、氧还原反应等电催化领域中的重要应用;最后,指出了TMNs在现阶段所面临的挑战和问题,并对其今后发展作出展望。

English

    1. [1]

      Benck, J. D.; Hellstern, T. R.; Kibsgaard, J.; Chakthranont, P.; Jaramillo, T. F. ACS Catal. 2014, 4 (11), 3957. doi: 10.1021/cs500923c

    2. [2]

      Wang, P. Y.; Pu, Z. H.; Li, Y. H.; Tu, Z. K.; Jiang, M.; Kou, Z. K.; Amiinu, I. S.; Mu, S. C. ACS Appl. Mater. Interfaces 2017, 9 (31), 26001. doi: 10.1021/acsami.7b06305

    3. [3]

      Stamenkovic, V.; Mun, B. S.; Mayrhofer, K. J. J.; Ross, P. N.; Markovic, N. M.; Rossmeisl, J.; Greeley, J.; Nørskov, J. K. Angew. Chem. 2006, 118, 2963. doi: 10.1002/ange.200504386

    4. [4]

      Gasteiger, H. A.; Kocha, S. S.; Sompalli, B.; Wagner, F. T. Appl. Catal. B 2005, 56, 9. doi: 10.1016/j.apcatb.2004.06.021

    5. [5]

      Gasteiger, H. A.; Marković, N. M. Science 2009, 324, 48. doi: 10.1126/science.1172083

    6. [6]

      Jia, Y.; Zhang, L. Z.; Zhuang, L. Z.; Liu, H. L.; Yan, X. C.; Wang, X.; Liu, J. D.; Wang, J. C.; Zheng, Y. R.; Xiao, Z. H.; et al. Nat. Catal. 2019, 2, 688. doi: 10.1038/s41929-019-0297-4

    7. [7]

      Jin, H. H.; Zhou, H.; He, D. P.; Wang, Z. H.; Wu, Q. L.; Liang, Q. R.; Liu, S. L.; Mu, S. C. Appl. Catal. B: Environ. 2019, 250, 143. doi: 10.1016/j.apcatb.2019.03.013

    8. [8]

      Hu, Q.; Li, G. M.; Han, Z.; Wang, Z. Y.; Haung, X. W.; Chai, X. Y.; Zhang, Q. L.; Liu, J. H.; He, C. X. Adv. Energy Mater. 2019, 9, 1901130. doi: 10.1002/aenm.201901130

    9. [9]

      Mahmood, N.; Yao, Y. D.; Zhang, J. W.; Pan, L.; Zhang, X. W.; Zou, J. -J. Adv. Sci. 2017, 1700464. doi: 10.1002/advs.201700464

    10. [10]

      Pu, Z. H.; Amiinu, I. S.; Kou, Z. K.; Li, W. Q.; Mu, S. C. Angew. Chem. Int. Ed. 2017, 56, 11559. doi: 10.1002/anie.201704911

    11. [11]

      Ouyang, T.; Wang, X. T.; Mai, X. Q.; Chen, A. -N.; Tang, Z. Y. Angew. Chem. Int. Ed. 2020, 59, 11948. doi: 10.1002/anie.202004533

    12. [12]

      Wang, C.; Qi, L. M. Angew. Chem. Int. Ed. 2020, 59, 17219. doi: 10.1002/anie.202005436

    13. [13]

      Gao, Q. S.; Zhang, W. B.; Shi, Z. P.; Yang, L. C.; Tang, Y. Adv. Mater. 2019, 31, 1802880. doi: 10.1002/adma.201802880

    14. [14]

      Yu, Y. D.; Zhou, J.; Sun, Z. M. Adv. Funct. Mater. 2020, 2000570. doi: 10.1002/adfm.202000570

    15. [15]

      Zhang, H. J.; Hagen, D. J.; Li, X. P.; Graff, A.; Heyroth, F.; Fuhrmann, B.; Kostanovskiy, I.; Schweizer, S. L.; Caddeo, F.; et al. Angew. Chem. Int. Ed. 2020, 59, 17172. doi: 10.1002/anie.202002280

    16. [16]

      Hou, C. C.; Zou, L. L.; Wang, Y.; Xu, Q. Angew. Chem. Int. Ed. doi: 10.1002/anie.202011347

    17. [17]

      Guo, Y. N.; Park, T.; Yi, J. W.; Henzie, J.; Kim, J.; Wang, Z. L.; Jiang, B.; Bando, Y.; Sugahara, Y.; Tang, J.; et al. Adv. Mater. 2019, 31, 1807134. doi: 10.1002/adma.201807134

    18. [18]

      Guo, M. R.; Qayum, A.; Dong, S.; Jiao, X. L.; Chen, D. R.; Wang, T. J. Mater. Chem. A 2020, 8, 9239. doi: 10.1039/D0TA02337J

    19. [19]

      Yang, Y. S.; Zhuang, L. Z.; Rufford, T. E.; Wang, S. B.; Zhu, Z. H. RSC Adv. 2017, 7, 32923. doi: 10.1039/C7RA02558K

    20. [20]

      Chen, X. C.; Yu, Z. X.; Wei, L.; Zhou, Z.; Zhai, S. L.; Chen, J. S.; Wang, Y. Q.; Huang, Q. W.; Karahan, H. E.; Liao, X. Z.; et al. J. Mater. Chem. A 2019, 7, 764. doi: 10.1039/C8TA09130G

    21. [21]

      Gao, X. R.; Liu, X. M.; Zang, W. J.; Dong, H. L.; Pang, Y. J.; Kou, Z. K.; Wang, P. Y.; Pan, Z. H.; Wei, S. R.; Mu, S. C.; et al. Nano Energy 2020, 78, 105355. doi: 10.1016/j.nanoen.2020.105355

    22. [22]

      Yu, X. X.; Zhou, T. P.; Ge, J. K.; Wu, C. Z. ACS Mater. Lett. 2020. doi: 10.1021/acsmaterialslett.0c00339

    23. [23]

      Ham, D. J.; Lee, J. S. Energies 2009, 2, 873. doi: 10.3390/en20400873

    24. [24]

      Chen, J. G. Chem. Rev. 1996, 96, 4, 1477. doi: 10.1021/cr950232u

    25. [25]

      Lee, J. S.; Ham, D. J. Encyclo. Catal. 2010, doi: 10.1002/0471227617.eoc138.pub2

    26. [26]

      Wu, R.; Zhang, J. F.; Shi, Y. M.; Liu, D. L.; Zhang, B. J. Am. Chem. Soc. 2015, 137 (22), 6983. doi: 10.1021/jacs.5b01330

    27. [27]

      Hammer, B.; Nørskov, J. K. Nature 1995, 376, 20. doi: 10.1038/376238a0

    28. [28]

      Wei, C.; Sun, Y. M.; Scherer, G. G.; Fisher, A. C.; Sherburne, M.; Ager, J. W.; Xu, Z. C. J. J. Am. Chem. Soc. 2020, 142, 7765. doi: 10.1021/jacs.9b12005

    29. [29]

      Gao, B. F.; Veith, G. M.; Diaz, R. E.; Lui, J.; Stach, E. A.; Adzic, R. R.; Khalifah, P. G. Angew. Chem. Int. Ed. 2013, 52, 10753. doi: 10.1002/anie.201303197

    30. [30]

      Schwarz, K. Crit. Rev. Solid State Mater. Sci. 1987, 13, 211. doi: 10.1080/10408438708242178

    31. [31]

      Liu, Y.; Liu, T. G.; Chen, J. G.; Mustain, W. E. ACS Catal. 2013, 3, 1184. doi: 10.1021/cs4001249

    32. [32]

      Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J.; Chen, J. G.; Pandelov, S.; Stimming, U. J. Electrochem. Soc. 2005, 152, J23. doi: 10.1149/1.1856988

    33. [33]

      Ignaszak, A.; Song, C.; Zhu, W.; Zhang, J.; Bauer, A.; Baker, R.; Neburchilov, V.; Ye, S.; Campbell, S. Electrochim. Acta 2012, 69, 397. doi: 10.1016/j.electacta.2012.03.039.

    34. [34]

      Peng, X.; Pi, C. R.; Zhang, X. M.; Li, S.; Huo, K. F.; Paul, K. C. Sustainable Energy Fuels 2019, 3, 366. doi: 10.1039/C8SE00525G

    35. [35]

      Kang, J. S.; Park, M. -A.; Kim, J. -Y.; Park, S. H.; Chung, D. Y.; Yu, S. H.; Kim, J.; Park, J.; Choil, J. -W.; Lee1, K. J. Sci. Rep. 2015, 5, 10450. doi: 10.1038/srep10450

    36. [36]

      Dorman, G. J. W. R.; Sikkens, M. Thin Solid Films 1983, 105 (3), 251. doi: 10.1016/0040-6090(83)90290-0

    37. [37]

      Murthy, A. P.; Govindarajan, D.; Theerthagiri, J.; Madhavan, J.; Parasuraman, K. Electrochim. Acta 2018, 283, 1525. doi: 10.1016/j.electacta.2018.07.094

    38. [38]

      Wei, B. B.; Tang, G. S.; Liang, H. F.; Qi, Z. B.; Zhang, D. F.; Hu, W. S.; Shen, H.; Wang, Z. C. Electrochem. Commun. 2018, 93, 166. doi: 10.1016/j.elecom.2018.07.012

    39. [39]

      Peng, X.; Huo, K. F.; Fu, J. J.; Gao, B.; Wang, L.; Hu, L. S.; Zhang, X. M.; Chu, P. K. ChemElectroChem 2015, 2, 512. doi: 10.1002/celc.201402349

    40. [40]

      Liu, C.; Zhang, H.; Shi, W.; Lei, A. Chem. Rev. 2011, 111, 1780. doi: 10.1021/cr100379j

    41. [41]

      Peng, X.; Huo, K.; Fu, J.; Zhang, X.; Gao, B.; Chu, P. K. Chem. Commun. 2013, 49, 10172. doi: 10.1039/C3CC41249K

    42. [42]

      余翠平, 王岩, 崔接武, 刘家琴, 吴玉程.物理化学学报, 2017, 33(10), 1944. doi: 10.3866/PKU.WHXB201705177Yu, C. P.; Wang, Y.; Cui, J. W.; Liu, J. Q.; Wu, Y. C. Acta Phys. -Chim. Sin. 2017, 33 (10), 1944. doi: 10.3866/PKU.WHXB201705177

    43. [43]

      Nagai, M. Appl. Catal. A: Gen. 2007, 322, 178. doi: 10.1016/j.apcata.2007.01.006

    44. [44]

      刘振林, 孟明, 伏义路, 姜明, 胡天斗, 谢亚宁, 刘涛.物理化学学报, 2001, 17(7), 631. doi: 10.3866/PKU.WHXB20010712Liu, Z. L.; Meng, M.; Fu, Y. L.; Jiang, M.; Hu, T. D.; Xie, Y. N.; Liu, T. Acta Phys. -Chim. Sin. 2001, 17(7), 631. doi: 10.3866/PKU.WHXB20010712

    45. [45]

      Cheng, Z. X.; Saad, A.; Guo, H. C.; Wang, C. H.; Liu, S. Q.; Thomas, T. J.; Yang, M. H. J. Alloy. Compd. 2020, 838, 155375. doi: 10.1016/j.jallcom.2020.155375

    46. [46]

      Wang, H. M.; Wu, Z. J.; Kong, J.; Wang, Z. Q.; Zhang, M. H. J. Solid State Chem. 2012, 194, 238. doi: 10.1016/j.jssc.2012.05.028

    47. [47]

      Fan, G. L.; Li, F.; Evans, D. G.; Duan, X. Chem. Soc. Rev. 2014, 43, 7040. doi: 10.1039/c4cs00160e

    48. [48]

      Jia, X. D.; Zhao, Y. F.; Chen, G. B.; Shang, L.; Shi, R.; Kang, X. F.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. -H.; Zhang, T. R. Adv. Energy Mater. 2016, 6, 1502585. doi: 10.1002/aenm.201502585

    49. [49]

      Wang, Y. Y.; Xie, C.; Liu, D. D.; Huang, X. B.; Huo, J.; Wang, S. Y. ACS Appl. Mater. Interfaces 2016, 8(29), 18652. doi: 10.1021/acsami.6b05811

    50. [50]

      Yao, N.; Li, P.; Zhou, Z. R.; Zhao, Y. M.; Cheng, G. Z.; Chen, S. L.; Luo, W. Adv. Energy Mater. 2019, 1902449. doi: 10.1002/aenm.201902449

    51. [51]

      Rachuri, Y.; Bisht, K. K.; Parmar, B.; Suresh, E. Solid State Chem. 2015, 223, 23. doi: 10.1016/j.jssc.2014.05.012

    52. [52]

      Zhu, J. J.; Liu, C. C.; Sun, J.; Xing, Y. Y.; Quan, B.; Li, D.; Jiang, D. L. Electrochim. Acta 2020, 354, 136629. doi: 10.1016/j.electacta.2020.136629

    53. [53]

      Xu, Q. C.; Jiang, H.; Li, Y. H.; Liang, D.; Hu, Y. J.; Li, C. Z. Appl. Catal. B: Environ. 2019, 256, 117893. doi: 10.1016/j.apcatb.2019.117893

    54. [54]

      Wang, F. M.; Zhao, H. M.; Ma, Y. R.; Yang, Y.; Li, B.; Cui, Y. Y.; Guo, Z. Y.; Wang, L. J. Energy Chem. 2020, 50, 52. doi: 10.1016/j.jechem.2020.03.006

    55. [55]

      Feng, X. G.; Wang, H. X.; Bo, X. J.; Guo, L. P. ACS Appl. Mater. Interfaces 2019, 11(8), 8018. doi: 10.1021/acsami.8b21369

    56. [56]

      Theerthagiri, J.; Dalavi, S. B.; Raja, M. M.; Panda, R. N. Mater. Res. Bull. 2013, 48 (11), 4444. doi: 10.1016/j.materresbull.2013.07.043

    57. [57]

      Jin, H. Y.; Gu, Q. F.; Chen, B.; Tang, C.; Zheng, Y.; Zhang, H.; Jaroniec, M.; Qiao, S. Z. Chem 2020, 6, 2382. doi: 10.1016/j.chempr.2020.06.037

    58. [58]

      Guan, C.; Sumboja, A.; Zang, W. J.; Qian, Y. H.; Zhang, H.; Liu, X. M.; Liu, Z. L.; Zhao, D.; Pennycook, S. J.; Wang, J. Energy Storage Mater. 2019, 16, 243. doi: 10.1016/j.ensm.2018.06.001

    59. [59]

      Gao, X. R.; Yu, Y.; Liang, Q. R.; Pang, Y. J.; Miao, L. Q.; Liu, X. M.; Kou, Z. K.; Hed, J.; Pennycookb, S. J.; Mu, S. C.; et al. Appl. Catal. B: Environ. 2020, 270, 118889. doi: 10.1016/j.apcatb.2020.118889

    60. [60]

      Liu, T. T.; Li, M.; Bo, X. J.; Zhou, M. ACS Sustain. Chem. Eng. 2018, 6(9), 11457. doi: 10.1021/acssuschemeng.8b01510

    61. [61]

      Hu, Y. W.; Xiong, T. Z.; Balogun, M. S. J. T.; Huang, Y. C.; Adekoya, D.; Zhang, S. Q.; Tong, Y. X. Mater. Today Phys. 2020, 100267. doi: 10.1016/j.mtphys.2020.100267

    62. [62]

      Kou, Z. K.; Wang, T. T.; Hu, H. J.; Zheng, L. R.; Mu, S. C.; Pan, Z. H.; Lyu, Z. Y.; Zang, W. J.; Pennycook, S. J.; Wang, J. Small 2019, 15, 1900248. doi: 10.1002/smll.201900248

    63. [63]

      Kou, Z. K.; Wang, T. T.; Gu, Q. L.; Xiong, M.; Zheng, L. R.; Li, X.; Pan, Z. H.; Chen, H.; Verpoort, F.; Cheetham, A. K.; et al. Adv. Energy Mater. 2019, 1803768. doi: 10.1002/aenm.201803768

    64. [64]

      Varga, T.; Ballai, G.; Vásárhelyi, L.; Haspel, H.; Kukovecz, A.; Konya, Z. Appl. Catal. B: Environ. 2018, 237, 826. doi: 10.1016/j.apcatb.2018.06.054

    65. [65]

      Qi, W. L.; Zhou, Y.; Liu, S. Q.; Liu, H. H.; Hui, L. S.; Turak, A.; Wang, J.; Yang, M. H. Appl. Mater. Today 2020, 18, 100476. doi: 10.1016/j.apmt.2019.100476

    66. [66]

      Theerthagiri, J.; Leea, S. J.; Murthyb, A. P.; Madhavanb, J.; Choia, M. Y. Curr. Opin. Solid State Mater. Sci. 2020, 24 (1), 100805. doi: 10.1016/j.cossms.2020.100805

    67. [67]

      Cheng, R. L.; He, H. L.; Pu, Z. H.; Amiinu, I. S.; Chen, L.; Wang, Z.; Li, G. Q.; Mu, S. C. Electrochim. Acta 2019, 298, 799. doi: 10.1016/j.electacta.2018.12.128

    68. [68]

      Liang, J.; Zhang, B.; Shen, H. Q.; Yin, Y.; Liu, L. Q.; Ma, Y. M.; Wang, X.; Xiao, C. H.; Kong, J.; Ding, S. J. Appl. Surf. Sci. 2020, 503, 144143. doi: 10.1016/j.apsusc.2019.144143

    69. [69]

      Gao, D. Q.; Zhang, J. Y.; Wang, T. T.; Xiao, W.; Tao, K.; Xue, D. S.; Ding, J. J. Mater. Chem. A 2016, 4, 17363. doi: 10.1039/C6TA07883D

    70. [70]

      Jin, H. Y.; Liu, X.; Vasileff, A.; Jiao, Y.; Zhao, Y. Q.; Zheng, Y.; Qiao, S. Z. ACS Nano 2018, 12 (12), 12761. doi: 10.1021/acsnano.8b07841

    71. [71]

      Yao, N.; Meng, R.; Wu, F.; Fan, Z.Y.; Cheng, G. Z.; Luo, W. Appl. Catal. B: Environ. 2020, 277, 119282. doi: 10.1016/j.apcatb.2020.119282

    72. [72]

      Xiang, M. Q.; Song, M.; Zhu, Q. S.; Yang, Y. F.; Hu, C. Q.; Liu, Z. W.; Zhao, H. D.; Ge, Y. Chem. Eng. J. 2021, 404, 126451. doi: 10.1016/j.cej.2020.126451

    73. [73]

      Gao, B. F.; Veith, G. M.; Neuefeind, J. C.; Adzic, R. R.; Khalifah, P. G. J. Am. Chem. Soc. 2013, 135 (51), 19186. doi: 10.1021/ja4081056

    74. [74]

      Chen, P. Z.; Xu, K.; Tong, Y.; Li, X. L.; Tao, S. T.; Fang, Z. W.; Chu, W. S.; Wu, X. J.; Wu, C. Z. Inorg. Chem. Front. 2016, 3, 236. doi: 10.1039/C5QI00197H

    75. [75]

      Zhang, Y. Q.; Ouyang, B.; Xu, J.; Jia, G. C.; Chen, S.; Rawat, R. S.; Fan, H. J. Angew. Chem. 2016, 55 (30), 8670. doi: 10.1002/anie.201604372

    76. [76]

      Chen, P. Z.; Xu, K.; Fang, Z. W.; Tong, Y.; Wu, J. C.; Lu, X. L.; Peng, X.; Ding, H.; Wu, C. Z.; Xie, Y. Angew. Chem. 2015, 54 (49), 14710. doi: 10.1002/anie.201506480

    77. [77]

      Liu, T. T.; Tian, Y.; Li, M.; Su, Z. M.; Bai, J.; Ma, C. B.; Bo, X. J.; Guan, W.; Zhou, M. Electrochim. Acta 2019, 323, 134684. doi: 10.1016/j.electacta.2019.134684

    78. [78]

      Li, X. R.; Wang, C. L.; Xue, H. G.; Pang, H.; Xu, Q. Coord. Chem. Rev. 2020, 422, 213468. doi: 10.1016/j.ccr.2020.213468

    79. [79]

      Tareen, A. K.; Priyanga, G. S.; Khan, K.; Pervaiz, E. ChemSusChem 2019, 12, 3941. doi: 10.1002/cssc.201900553

    80. [80]

      Shao, Z. Y.; Sun, J.; Yan, Z.; Huang, K. K.; Tian, F. L.; Xue, H.; Wang, Q. Appl. Surf. Sci. 2020, 529, 147172. doi: 10.1016/j.apsusc.2020.147172

    81. [81]

      Fu, X. G.; Zhu, J. S.; Ao, B.; Lyu, X. Y.; Chen, J. Inorg. Chem. Commun. 2020, 113, 107802. doi: 10.1016/j.inoche.2020.107802

    82. [82]

      Yang, Y.; Zeng, R.; Xiong, Y.; DiSalvo, F. J.; Abruña, H. D. J. Am. Chem. Soc. 2019, 141(49), 19241. doi: 10.1021/jacs.9b10809

    83. [83]

      Qi, J.; Jiang, L. H.; Jiang, Q.; Wang, S. L.; Sun, G. Q. J. Phys. Chem. C 2010, 114(42), 18159. doi: 10.1021/jp102284s

    84. [84]

      Kreider, M. E.; Kreider, A.; Back, S.; Liu, Y. Z.; Siahrostami, S.; Nordlund, D.; Sinclair, R.; Nørskov, J. K.; King, L. A.; Jaramillo, T. F. ACS Appl. Mater. Interfaces 2019, 11(30), 26863. doi: 10.1021/acsami.9b07116

    85. [85]

      Zheng, Y. Y.; Zhang, J.; Zhan, H. T.; Sun, D. L.; Dang, D.; Tian, X. L. Electrochem. Commun. 2018, 91, 31. doi: 10.1016/j.elecom.2018.04.021

    86. [86]

      Chen, J. W.; Wei, X. Y.; Zhang, J.; Lou, Y.; Chen, Y. H.; Wang, G.; Wang, R. L. Ind. Eng. Chem. Res. 2019, 58, 8, 2741. doi: 10.1021/acs.iecr.8b05719

    87. [87]

      Wang, M.; Yang, Y. S.; Liu, X. B.; Pu, Z. H.; Kou, Z. K.; Zhu, P. P.; Mu, S. C. Nanoscale 2017, 9, 7641. doi: 10.1039/C7NR01925D

    88. [88]

      Radwan, A.; Jin, H. H.; Liu, B. S.; Chen, Z. B.; Wu, Q.; Zhao, X.; He, D. P.; Mu, S. C. Carbon 2020. doi: 10.1016/j.carbon.2020.09.024

    89. [89]

      Zhang, J.; Chen, J. W.; Luo, Y.; Chen, Y. H.; Li, Z. J.; Shi, J. J.; Wang, G. Carbon 2020, 159, 16. doi: 10.1016/j.carbon.2019.12.027

    90. [90]

      Zhang, J.; Chen, J. W.; Luo, Y.; Chen, Y. H.; Li, Z. J.; Shi, J. J.; Wang, G.; Wang, R. L. ACS Sustain. Chem. Eng. 2020, 8(1), 382. doi: 10.1021/acssuschemeng.9b05655

    91. [91]

      Varga, T.; Vásárhelyi, L.; Ballai, G.; Haspel, H.; Oszkó, A.; Kukovecz, Á.; Kónya, Z. ACS Omega 2019, 4 (1), 130. doi: 10.1021/acsomega.8b02646

    92. [92]

      Norskov, J. K. Rep. Prog. Phys. 1990, 53 (10), 1253. doi: 10.1088/0034-4885/53/10/001

    93. [93]

      Norskov, J. K. Prog. Surf. Sci. 1991, 38(2), 103. doi: 10.1016/0079-6816(91)90007-Q

    94. [94]

      Guan, J. L.; Li, C. F.; Zhao, J. W.; Yang, Y. Z.; Zhou, W.; Wang, Y.; Li, G. R. Appl. Catal. B: Environ. 2020, 269, 118600. doi: 10.1016/j.apcatb.2020.118600

    95. [95]

      Hu, Y. W.; Yang, H.; Chen, J. J.; Xiong, T. Z.; Balogun, M. -S.; Tong, Y. X. ACS Appl. Mater. Interfaces 2019, 11(5), 5152. doi: 10.1021/acsami.8b20717

    96. [96]

      Liu, X. L.; Lv, X. S.; Wang, P.; Zhang, Q. Q.; Huang, B. B.; Wang, Z. Y.; Liu, Y. Y.; Zheng, Z. K.; Dai, Y. Electrochim. Acta 2020, 333, 135488. doi: 10.1016/j.electacta.2019.135488

    97. [97]

      Chen, Q.; Wang, R.; Yu, M. H.; Zeng, Y. X.; Lu, F. Q.; Kuang, X. J.; Lu, X. H. Electrochim. Acta 2017, 247, 666. doi: 10.1016/j.electacta.2017.07.025

    98. [98]

      Liu, Z. H.; Tan, H.; Xin, J. P.; Duan, J. Z.; Su, X. W.; Hao, P.; Xie, J. F.; Zhan, J.; Zhang, J.; Wang, J. J. ACS Appl. Mater. Interfaces 2018, 10(4), 3699. doi: 10.1021/acsami.7b18671

    99. [99]

      Jia, J. R.; Zhai, M. K.; Lv, J. J.; Zhao, B. X.; Du, H. B.; Zhu, J. J. ACS Appl. Mater. Interfaces 2018, 10(36), 30400. doi: 10.1021/acsami.8b09854

    100. [100]

      Guo, H. P.; Ruan B. Y.; Luo, W. B.; Deng, J. Q.; Wang, J. Z.; Liu, H. K.; Dou, S. X. ACS Catal. 2018, 8(10), 9686. doi: 10.1021/acscatal.8b01821

    101. [101]

      Ge, H. Y.; Li, G. D.; Shen, J. X.; Ma, W. Q.; Meng, X. G.; Xu, L. Q. Appl. Catal. B: Environ. 2020, 275, 119104. doi: 10.1016/j.apcatb.2020.119104

    102. [102]

      Chen, L. L.; Zhang, Y. L.; Liu, X. J.; Long, L.; Wang, S. Y.; Xu, X. L.; Liu, M. C.; Yang, W. X.; Jia, J. B. Carbon 2019, 151, 10. doi: 10.1016/j.carbon.2019.05.063

    103. [103]

      Wang, Q.; Shang, L.; Shi, R.; Zhang, X.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Nano Energy 2017, 40, 382. doi: 10.1016/j.nanoen.2017.08.040

    104. [104]

      玄翠娟, 王杰, 朱静, 王得丽.物理化学学报, 2017, 33(1), 149. doi: 10.3866/PKU.WHXB201609143Xuan, C. J.; Wang, J.; Zhu, J.; Wang, D. L. Acta Phys. -Chim. Sin. 2017, 33(1), 149. doi: 10.3866/PKU.WHXB201609143

    105. [105]

      Zhang, X. L.; Yang, Z. X.; Lu, Z. S.; Wang, W. C. Carbon 2018, 130, 112. doi: 10.1016/j.carbon.2017.12.121

    106. [106]

      Liu, J. M.; Wang, C. B.; Sun, H. M.; Wang, H.; Rong, F. L.; He, L. H.; Lou, Y. F.; Zhang, S.; Zhang, Z. H.; Du, M. Appl. Catal. B: Environ. 2020, 279, 119407. doi: 10.1016/j.apcatb.2020.119407

    107. [107]

      Zou, H. Y.; Li, G.; Duan, L. L.; Kou, Z. K.; Wang, J. Appl. Catal. B: Environ. 2019, 259, 118100. doi: 10.1016/j.apcatb.2019.118100

    108. [108]

      Guo, Y. Y.; Yuan, P. F.; Zhang, J. N.; Xia, H. C.; Cheng, F. Y.; Zhou, M. F.; Li, J.; Qiao, Y. Y.; Mu, S. C.; Xu, Q. Adv. Funct. Mater. 2018, 28, 51. doi: 10.1002/adfm.201805641

    109. [109]

      Amiinu, I. S.; Pu, Z. H.; Liu, X. B.; Owusu, K. A.; Monestel, H. G. R.; Boakye, F. O.; Zhang, H. N.; Mu, S. C. Adv. Funct. Mater. 2017, 27, 1702300. doi: 10.1002/adfm.201702300

  • 加载中
计量
  • PDF下载量:  138
  • 文章访问数:  3232
  • HTML全文浏览量:  1434
文章相关
  • 发布日期:  2021-07-15
  • 收稿日期:  2020-09-29
  • 接受日期:  2020-10-31
  • 修回日期:  2020-10-26
  • 网络出版日期:  2020-11-09
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章