Probing Molecular Structures of Antifouling Polymer/Liquid Interfaces In Situ

Chengcheng Zhang Ralph Crisci Zhan Chen

Citation:  Zhang Chengcheng, Crisci Ralph, Chen Zhan. Probing Molecular Structures of Antifouling Polymer/Liquid Interfaces In Situ[J]. Acta Physico-Chimica Sinica, 2020, 36(10): 191000. doi: 10.3866/PKU.WHXB201910003 shu

原位探测防污高分子材料与液体界面的分子结构

    作者简介:

    Professor Zhan Chen was born on June 4, 1966. He received his BS degree in Chemistry from Peking University in 1988, MS degree in Physics from Chinese Academy of Sciences in 1991, PhD degree in Chemistry from the University of California at Berkeley in 1998 and did his postdoctoral research in Lawrence Berkeley National Laboratory between 1998 and 2000. He then worked at the University of Michigan as an assistant professor (2000–2005), an associate professor with tenure (2005–2009), and was promoted to a full professor with tenure in 2009. Currently he is a professor of chemistry, macromolecular science and engineering, biophysics, and applied physics at the University of Michigan. Professor Chen's research is focused on the molecular level understanding of structures of polymers and biological molecules at interfaces. His fundamental research has been extensively supported by a variety of Federal funding agencies such as National Science Foundation, National Institutes of Health, Office of Naval Research, Army Research Office, Defense Threat Reduction Agency, etc. He has also widely collaborated with companies such as Dow Chemical, BASF, P & G, Intel, IBM, BMS, Sanofi, Texas Instruments, etc. on applied research. Professor Chen received the Beckman Young Investigator Award, Dow Corning Professorship, National Science Foundation CAREER Award, and Japan Society for the Promotion of Science Invitation Fellowship. He is a senior editor of Langmuir and an associate editor-in-chief of Chinese Chemical Letters. Professor Chen is a Fellow of American Association for the Advancement of Science (AAAS) and a Fellow of Royal Society of Chemistry (RSC). He published 280 peer reviewed research articles and gave more than 330 invited talks at various institutions and conferences;
    通讯作者: ChenZhan, zhanc@umich.edu
摘要: 海洋生物附着在船体表面会导致严重的燃油消耗的增加,防污高分子材料的研究因此成为对海洋船只运行极其重要的课题。这些高分子可以被用作船只的表面涂层,从而保护船只不受到海洋生物的吸附和生长的影响。两性离子高分子近年来已经逐渐成为潜力巨大的防污材料。研究表明,这些两性离子高分子的表面在水中的强水化作用对于其防污性能有至关重要的影响。在本篇综述中,我们总结了最近通过使用和频(SFG)振动光谱技术来实现的对防污材料的界面分析工作。SFG是一种表面敏感的技术,可以在原位并实时检测界面高分子和水分子的分子结构。我们总结的防污材料包括两性离子高分子,混合电荷式高分子以及两性的拟肽高分子材料。这些材料的界面水研究,以及盐离子对界面水分子作用会被详细讨论。我们也将介绍这些防污材料与蛋白质及海藻之间的作用。以上这些研究清楚地表明了高分子界面强水化与防污性能之间的关联,也显示了SFG是对高分子材料防污机理探索的一个强有力的分析技术。

English

    1. [1]

      Banerjee, I.; Pangule, R. C.; Kane, R. S. Adv. Mater. 2011, 23, 690. doi: 10.1002/adma.201001215

    2. [2]

      Rosenhahn, A.; Schilp, S.; Kreuzer, H. J.; Grunze, M. Phys. Chem. Chem. Phys. 2010, 12 (17), 4275. doi: 10.1039/c001968m

    3. [3]

      Yang, W. J.; Neoh, K. G.; Kang, E. T.; Teo, S. L. M.; Rittschof, D. Prog. Polym. Sci. 2014, 39 (5), 1017. doi: 10.1016/j.progpolymsci.2014.02.002

    4. [4]

      Grozea, C. M.; Walker, G. C. Soft Matter 2009, 5 (21), 4088. doi: 10.1039/b910899h

    5. [5]

      Zheng, J.; Li, L.; Tsao, H. K.; Sheng, Y. J.; Chen, S.; Jiang, S. Biophys. J. 2005, 89 (1), 158. doi: 10.1529/biophysj.105.059428

    6. [6]

      Herrwerth, S.; Eck, W.; Reinhardt, S.; Grunze, M. J. Am. Chem. Soc. 2003, 125 (31), 9359. doi: 10.1021/ja034820y

    7. [7]

      Chen, S.; Li, L.; Boozer, C. L.; Jiang, S. Langmuir 2000, 16 (24), 9287. doi: 10.1021/la000417i

    8. [8]

      Yu, Q.; Zhang, Y.; Wang, H.; Brash, J.; Chen, H. Acta Biomater. 2011, 7 (4), 1550. doi: 10.1016/j.actbio.2010.12.021

    9. [9]

      Han, S.; Kim, C.; Kwon, D. Polymer 1997, 38 (2), 317. doi: 10.1016/S0032-3861(97)88175-X

    10. [10]

      Schlenoff, J. B. Langmuir 2014, 30 (32), 9625. doi: 10.1021/la500057j

    11. [11]

      Jiang, S.; Cao, Z. Adv. Mater. 2010, 22 (9), 920. doi: 10.1002/adma.200901407

    12. [12]

      Zhang, Z.; Finlay, J. A.; Wang, L.; Gao, Y.; Callow, J. A.; Callow, M. E.; Jiang, S. Langmuir 2009, 25 (23), 13516. doi: 10.1021/la901957k

    13. [13]

      Li, G.; Xue, H.; Cheng, G.; Chen, S.; Zhang, F.; Jiang, S. J. Phys. Chem. B 2008, 112 (48), 15269. doi: 10.1021/jp8058728

    14. [14]

      Leng, C.; Hung, H. C.; Sun, S.; Wang, D.; Li, Y.; Jiang, S.; Chen, Z. ACS Appl. Mater. Interfaces 2015, 7 (30), 16881. doi: 10.1021/acsami.5b05627

    15. [15]

      Leng, C.; Han, X.; Shao, Q.; Zhu, Y.; Li, Y.; Jiang, S.; Chen, Z. J. Phys. Chem. C 2014, 118 (29), 15840. doi: 10.1021/jp504293r

    16. [16]

      Leng, C.; Sun, S.; Zhang, K.; Jiang, S.; Chen, Z. Acta Biomater. 2016, 40, 6. doi: 10.1016/j.actbio.2016.02.030

    17. [17]

      Kondo, T.; Gemmei-Ide, M.; Kitano, H.; Ohno, K.; Noguchi, H.; Uosaki, K. Colloids. Surf. 2012, 91, 215. doi: 10.1016/j.colsurfb.2011.11.012

    18. [18]

      Nagasawa, D.; Azuma, T.; Noguchi, H.; Uosaki, K.; Takai, M. J. Phys. Chem. C 2015, 119 (30), 17193. doi: 10.1021/acs.jpcc.5b04186

    19. [19]

      Hibino, H.; Takai, M.; Noguchi, H.; Sawamura, S.; Takahashi, Y.; Sakai, H.; Shiku, H. J. Physiol. Sci. 2017, 67 (4), 439. doi: 10.1007/s12576-017-0530-3

    20. [20]

      Leng, C.; Huang, H.; Zhang, K.; Hung, H. C.; Xu, Y.; Li, Y.; Jiang, S.; Chen, Z. Langmuir 2018, 34 (22), 6538. doi: 10.1021/acs.langmuir.8b00768

    21. [21]

      Han, X.; Leng, C.; Shao, Q.; Jiang, S.; Chen, Z. Langmuir 2019, 35 (5), 1327. doi: 10.1021/acs.langmuir.8b01515

    22. [22]

      Chen, S.; Li, L.; Zhao, C.; Zheng, J. Polymer 2010, 51 (23), 5283. doi: 10.1016/j.polymer.2010.08.022

    23. [23]

      Liu, L.; Li, W.; Liu, Q. WIREs. Nanomed. Nanobiotechnol. 2014, 6 (6), 599. doi: 10.1002/wnan.1278

    24. [24]

      Statz, A. R.; Meagher, R. J.; Barron, A. E.; Messersmith, P. B. J. Am. Chem. Soc. 2005, 127 (22), 7972. doi: 10.1021/ja0522534

    25. [25]

      Buskens, P.; Wouters, M.; Rentrop, C.; Vroon, Z. J. Coat. Technol. Res. 2013, 10 (1), 29. doi: 10.1007/s11998-012-9456-0

    26. [26]

      Badi, N.; Lutz, J. F. Chem. Soc. Rev. 2009, 38 (12), 3383. doi: 10.1039/B806413J

    27. [27]

      Seo, Y.; Brown, J. R.; Hall, L. M. Macromolecules 2015, 48 (14), 4974. doi: 10.1021/ma502309h

    28. [28]

      Ganesan, V.; Kumar, N. A.; Pryamitsyn, V. Macromolecules 2012, 45 (15), 6281. doi: 10.1021/ma301136y

    29. [29]

      Chang, L. W.; Lytle, T. K.; Radhakrishna, M.; Madinya, J. J.; Vélez, J.; Sing, C. E.; Perry, S. L. Nat. Commun. 2017, 8 (1), 1273. doi: 10.1038/s41467-017-01249-1

    30. [30]

      van Zoelen, W.; Buss, H. G.; Ellebracht, N. C.; Lynd, N. A.; Fischer, D. A.; Finlay, J.; Hill, S.; Callow, M. E.; Callow, J. A.; Kramer, E. J.; et al. ACS Macro Lett. 2014, 3 (4), 364. doi: 10.1021/mz500090n

    31. [31]

      Callow, J. A.; Callow, M. E. Nat. Commun. 2011, 2 (1), 244. doi: 10.1038/ncomms1251

    32. [32]

      Ekblad, T.; Bergström, G.; Ederth, T.; Conlan, S. L.; Mutton, R.; Clare, A. S.; Wang, S.; Liu, Y.; Zhao, Q.; D'Souza, F.; et al. Biomacromolecules 2008, 9 (10), 2775. doi: 10.1021/bm800547m

    33. [33]

      Rosales, A. M.; Murnen, H. K.; Zuckermann, R. N.; Segalman, R. A. Macromolecules 2010, 43 (13), 5627. doi: 10.1021/ma1002563

    34. [34]

      Murnen, H. K.; Rosales, A. M.; Jaworski, J. N.; Segalman, R. A.; Zuckermann, R. N. J. Am. Chem. Soc. 2010, 132 (45), 16112. doi: 10.1021/ja106340f

    35. [35]

      Rosales, A. M.; McCulloch, B. L.; Zuckermann, R. N.; Segalman, R. A. Macromolecules 2012, 45 (15), 6027. doi: 10.1021/ma300625b

    36. [36]

      Rosales, A. M.; Segalman, R. A.; Zuckermann, R. N. Soft Matter 2013, 9 (35), 8400. doi: 10.1039/C3SM51421H

    37. [37]

      Davidson, E. C.; Rosales, A. M.; Patterson, A. L.; Russ, B.; Yu, B.; Zuckermann, R. N.; Segalman, R. A. Macromolecules 2018, 51 (5), 2089. doi: 10.1021/acs.macromol.8b00055

    38. [38]

      Patterson, A. L.; Wenning, B.; Rizis, G.; Calabrese, D. R.; Finlay, J. A.; Franco, S. C.; Zuckermann, R. N.; Clare, A. S.; Kramer, E. J.; Ober, C. K.; et al. Macromolecules 2017, 50 (7), 2656. doi: 10.1021/acs.macromol.6b02505

    39. [39]

      Calabrese, D. R.; Wenning, B. M.; Hilda, B.; Finlay, J. A.; Fischer, D.; Clare, A. S.; Segalman, R. A.; Ober, C. K. Green Mater. 2017, 5 (1), 31. doi: 10.1680/jgrma.17.00006

    40. [40]

      Gudipati, C. S.; Greenlief, C. M.; Johnson, J. A.; Prayongpan, P.; Wooley, K. L. J. Polym. Sci. A: Polym. Chem. 2004, 42 (24), 6193. doi: 10.1002/pola.20466

    41. [41]

      Weinman, C. J.; Finlay, J. A.; Park, D.; Paik, M. Y.; Krishnan, S.; Sundaram, H. S.; Dimitriou, M.; Sohn, K. E.; Callow, M. E.; Callow, J. A.; et al. Langmuir 2009, 25 (20), 12266. doi: 10.1021/la901654q

    42. [42]

      Barry, M. E.; Davidson, E. C.; Zhang, C.; Patterson, A. L.; Yu, B.; Leonardi, A. K.; Duzen, N.; Malaviya, K.; Clarke, J. L.; Finlay, J. A.; et al. Macromolecules 2019, 52 (3), 1287. doi: 10.1021/acs.macromol.8b02390

    43. [43]

      Shen, Y. R. Nature. 1989, 337 (6207), 519. doi: 10.1038/337519a0

    44. [44]

      Wang, J.; Woodcock, S. E.; Buck, S. M.; Chen, C.; Chen, Z. J. Am. Chem. Soc. 2001, 123 (38), 9470. doi: 10.1021/ja0164071

    45. [45]

      Wang, J.; Paszti, Z.; Even, M. A.; Chen, Z. J. Am. Chem. Soc. 2002, 124 (24), 7016. doi: 10.1021/ja012387r

    46. [46]

      Lu, X.; Zhang, C.; Ulrich, N.; Xiao, M.; Ma, Y. H.; Chen, Z. Anal. Chem. 2017, 89 (1), 466. doi: 10.1021/acs.analchem.6b04320

    47. [47]

      陈战.物理化学学报, 2012, 28 (3), 504. doi: 10.3866/PKU.WHXB201201091Chen, Z. Acta Phys. -Chim. Sin. 2012, 28 (3), 504. doi: 10.3866/PKU.WHXB201201091

    48. [48]

      Clarke, M. L.; Chen, C.; Wang, J.; Chen, Z. Langmuir 2006, 22 (21), 8800. doi: 10.1021/la061386f

    49. [49]

      Wang, J.; Buck, S. M.; Even, M. A.; Chen, Z. J. Am. Chem. Soc. 2002, 124 (44), 13302. doi: 10.1021/ja026881m

    50. [50]

      Wang, J.; Buck, S. M.; Chen, Z. J. Phys. Chem. B 2002, 106 (44), 11666. doi: 10.1021/jp021363j

    51. [51]

      Ding, B.; Jasensky, J.; Li, Y.; Chen, Z. Acc. Chem. Res. 2016, 49 (6), 1149. doi: 10.1021/acs.accounts.6b00091

    52. [52]

      Lee, H.; Scherer, N. F.; Messersmith, P. B. Proc. Natl. Acad. Sci. U.S.A. 2006, 103 (35), 12999. doi: 10.1073/pnas.0605552103

    53. [53]

      Yu, J.; Wei, W.; Danner, E.; Ashley, R. K.; Israelachvili, J. N.; Waite, J. H. Nat. Chem. Biol. 2011, 7, 588. doi: 10.1038/nchembio.630

    54. [54]

      Naldrett, M. J.; Kaplan, D. L. Mar. Biol. 1997, 127 (4), 629. doi: 10.1007/s002270050053

    55. [55]

      Kamino, K. Biochem. J. 2001, 356 (2), 503. doi: 10.1042/bj3560503

    56. [56]

      Kamino, K. Biofouling 2013, 29 (6), 735. doi: 10.1080/08927014.2013.800863

    57. [57]

      Leng, C.; Buss, H. G.; Segalman, R. A.; Chen, Z. Langmuir 2015, 31 (34), 9306. doi: 10.1021/acs.langmuir.5b01440

  • 加载中
计量
  • PDF下载量:  14
  • 文章访问数:  966
  • HTML全文浏览量:  173
文章相关
  • 发布日期:  2020-10-15
  • 收稿日期:  2019-10-07
  • 接受日期:  2019-11-25
  • 修回日期:  2019-11-23
  • 网络出版日期:  2019-12-06
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章