Free Energy Change of Micelle Formation for Sodium Dodecyl Sulfate from a Dispersed State in Solution to Complete Micelles along Its Aggregation Pathways Evaluated by Chemical Species Model Combined with Molecular Dynamics Calculations

Noriyuki YOSHII Mika KOMORI Shinji KAWADA Hiroaki TAKABAYASHI Kazushi FUJIMOTO Susumu OKAZAKI

Citation:  YOSHII Noriyuki, KOMORI Mika, KAWADA Shinji, TAKABAYASHI Hiroaki, FUJIMOTO Kazushi, OKAZAKI Susumu. Free Energy Change of Micelle Formation for Sodium Dodecyl Sulfate from a Dispersed State in Solution to Complete Micelles along Its Aggregation Pathways Evaluated by Chemical Species Model Combined with Molecular Dynamics Calculations[J]. Acta Physico-Chimica Sinica, 2018, 34(10): 1163-1170. doi: 10.3866/PKU.WHXB201802271 shu

Free Energy Change of Micelle Formation for Sodium Dodecyl Sulfate from a Dispersed State in Solution to Complete Micelles along Its Aggregation Pathways Evaluated by Chemical Species Model Combined with Molecular Dynamics Calculations

    通讯作者: YOSHIINoriyuki, yoshii@ccs.engg.nagoya-u.ac.jp
    OKAZAKISusumu, okazaki@apchem.nagoya-u.ac.jp
摘要: Surfactant molecules, when dispersed in solution, have been shown to spontaneously form aggregates. Our previous studies on molecular dynamics (MD) calculations have shown that ionic sodium dodecyl sulfate molecules quickly aggregated even when the aggregation number is small. The aggregation rate, however, decreased for larger aggregation numbers. In addition, studies have shown that micelle formation was not completed even after a 100 ns-long MD run (Chem. Phys. Lett. 2016, 646, 36). Herein, we analyze the free energy change of micelle formation based on chemical species model combined with molecular dynamics calculations. First, the free energy landscape of the aggregation, ΔGi+j, where two aggregates with sizes i and j associate to form the (i + j)-mer, was investigated using the free energy of micelle formation of the i-mer, Gi, which was obtained through MD calculations. The calculated ΔGi+j was negative for all the aggregations where the sum of DS ions in the two aggregates was 60 or less. From the viewpoint of chemical equilibrium, aggregation to the stable micelle is desired. Further, the free energy profile along possible aggregation pathways was investigated, starting from small aggregates and ending with the complete thermodynamically stable micelles in solution. The free energy profiles, G(l, k), of the aggregates at l-th aggregation path and k-th state were evaluated by the formation free energy $\sum\limits_i {{n_i}\left( {l, k} \right)G_i^\dagger } $ and the free energy of mixing $\sum\limits_i {{n_i}(l, k){k_B}Tln({n_i}(l, k)/n(l, k))} $, where ni(l, k) is the number of i-mer in the system at the l-th aggregation path and k-th state, with $n\left( {l, k} \right) = \sum\limits_i {{n_i}\left( {l, k} \right)} $. All the aggregation pathways were obtained from the initial state of 12 pentamers to the stable micelle with i = 60. All the calculated G(l, k) values monotonically decreased with increasing k. This indicates that there are no free energy barriers along the pathways. Hence, the slowdown is not due to the thermodynamic stability of the aggregates, but rather the kinetics that inhibit the association of the fragments. The time required for a collision between aggregates, one of the kinetic factors, was evaluated using the fast passage time, tFPT. The calculated tFPT was about 20 ns for the aggregates with N = 31. Therefore, if aggregation is a diffusion-controlled process, it should be completed within the 100 ns-simulation. However, aggregation does not occur due to the free energy barrier between the aggregates, that is, the repulsive force acting on them. This may be caused by electrostatic repulsions produced by the overlap of the electric double layers, which are formed by the negative charge of the hydrophilic groups and counter sodium ions on the surface of the aggregates.

English

    1. [1]

      Tanford, C. J. Phys. Chem. 1974, 78, 2469. doi: 10.1021/j100617a012

    2. [2]

      Israelachvili, J. N. Intermolecular and Surface Forces, 2nd ed. ; Academic Press: London, UK, 1992.

    3. [3]

      Everett, D. H. Basic Principles of Colloid Science; The Royal Society of Chemistry: London, UK, 1988.

    4. [4]

      Puvvada, S.; Blankschtein, D. J. Chem. Phys. 1990, 92, 3710. doi: 10.1063/1.457829

    5. [5]

      Christopher, P. S.; Oxtoby, D. W. J. Chem. Phys. 2003, 118, 5665. doi: 10.1063/1.1554394

    6. [6]

      Maibaum, L.; Dinner, A. R.; Chandler, D. J. Phys. Chem. B 2004, 108, 6778. doi: 10.1021/jp037487t

    7. [7]

      Yoshii, N.; Iwahashi, K.; Okazaki, S. J. Chem. Phys. 2006, 124, 184901. doi: 10.1063/1.2179074

    8. [8]

      Pool, R.; Bolhuis, P. G. J. Chem. Phys. 2007, 126, 244703. doi: 10.1063/1.2741513

    9. [9]

      Burov, S. V.; Shchekin, A. K. J. Chem. Phys. 2010, 133, 244109. doi: 10.1063/1.3519815

    10. [10]

      Verde, A. V.; Frenkel, D. Soft Matter 2010, 6, 3815. doi: 10.1039/C0SM00011F

    11. [11]

      Bernardino, K.; de Moura, A. F. J. Phys. Chem. B 2013, 117, 7324. doi: 10.1021/jp312840y

    12. [12]

      Marrink, S. J.; Tieleman, D. P.; Mark, A. E. J. Phys. Chem. B 2000, 104, 12165. doi: 10.1021/jp001898h

    13. [13]

      Lazaridis, T.; Mallik, B.; Chen, Y. J. Phys. Chem. B 2005, 109, 15098. doi: 10.1021/jp0516801

    14. [14]

      Tieleman, D. P.; van der Spoel, D.; Berendsen, H. J. C. J. Phys. Chem. B 2000, 104, 6380. doi: 10.1021/jp001268f

    15. [15]

      Bond, P. J.; Cuthbertson, J. M.; Deol, S. S.; Sansom, M. S. P. J. Am. Chem. Soc. 2004, 126, 15948. doi: 10.1021/ja044819e

    16. [16]

      Jusufi, A.; Hynninen, A. -P.; Panagiotopoulos, A. Z. J. Phys. Chem. B 2008, 112, 13783. doi: 10.1021/jp8043225

    17. [17]

      Sanders, S.; Sammalkorpi, M.; Panagiotopoulos, A. Z. J. Phys. Chem. B 2012, 116, 2430. doi: 10.1021/jp209207p

    18. [18]

      Sammalkorpi, M.; Karttunen, M.; Haataja, M. J. Phys. Chem. B 2007, 111, 11722. doi: 10.1021/jp072587a

    19. [19]

      Cheong, D.; Panagiotopoulos, A. Z. Langmuir 2006, 22, 4076. doi: 10.1021/la053511d

    20. [20]

      Pool, R.; Bolhuis, P. G. J. Phys. Chem. B 2005, 109, 6650. doi: 10.1021/jp045576f

    21. [21]

      Pool, R.; Bolhuis, P. G. Phys. Rev. Lett. 2006, 97, 018302. doi: 10.1103/PhysRevLett.97.018302

    22. [22]

      Pool, R.; Bolhuis, P. G. Phys. Chem. Chem. Phys. 2006, 8, 941. doi: 10.1039/B512960E

    23. [23]

      Kawada, S.; Komori, M.; Fujimoto, K.; Yoshii, N.; Okazaki, S. Chem. Phys. Lett. 2016, 646, 36. doi: 10.1016/j.cplett.2015.12.062

    24. [24]

      Fujimoto, K.; Kubo, Y.; Kawada, S.; Yoshii, N.; Okazaki, S. Mol. Simul. 2017, 43, 13. doi: 10.1080/08927022.2017.1328557

    25. [25]

      Lifshitz, I. M.; Slyozov, V. V. J. Phys. Chem. Solids 1961, 19, 35. doi: 10.1016/0022-3697(61)90054-3

    26. [26]

      Szabo, A.; Schulten, K.; Schulten, Z. J. Chem. Phys. 1980, 72, 4350. doi: 10.1063/1.439715

    27. [27]

      Moore, W. J. Physical Chemistry, 4th ed. ; Prentice Hall, Inc. : Upper Saddle River, NJ, USA, 1972.

    28. [28]

      Everett, D. H. Colloids Surf. 1986, 21, 41. doi: 10.1016/0166-6622(86)80081-6

    29. [29]

      Yoshii, N.; Okazaki, S. Chem. Phys. Lett. 2006, 425, 58. doi: 10.1016/j.cplett.2006.05.004

    30. [30]

      Yoshii, N.; Okazaki, S. Chem. Phys. Lett. 2006, 426, 66. doi: 10.1016/j.cplett.2006.05.038

    31. [31]

      Aniansson, E. A. G.; Wall, S. N. J. Phys. Chem. 1974, 78, 1024. doi: 10.1021/j100603a016

    32. [32]

      Kestin, J.; Sokolov, M.; Wakeham, W. A. J. Phys. Chem. Ref. Data 1978, 7, 941. doi: 10.1063/1.555581

    33. [33]

      The value obtained in Eq. (1) of Ref. 28 was used.

    34. [34]

      Russel, W. B.; Saville, D. A.; Schowalter, W. R. Colloidal Dispersions; Cambridge University Press: Cambridge, UK, 1989.

    35. [35]

      Kawada, S.; Fujimoto, K.; Yoshii, N.; Okazaki, S. J. Chem. Phys. 2017, 147, 084903. doi: 10.1063/1.4998549

  • 加载中
计量
  • PDF下载量:  13
  • 文章访问数:  788
  • HTML全文浏览量:  137
文章相关
  • 发布日期:  2018-10-15
  • 收稿日期:  2017-12-25
  • 接受日期:  2018-02-19
  • 修回日期:  2018-02-02
  • 网络出版日期:  2018-10-27
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章