
Analogies between Density Functional Theory Response Kernels and Derivatives of Thermodynamic State Functions
English
Analogies between Density Functional Theory Response Kernels and Derivatives of Thermodynamic State Functions
-
-
[1]
Parr, R. G.; Yang, W. Ann. Rev. Phys. Chem. 1995, 46, 701.doi: 10.1146/annurev.pc.46.100195.003413
-
[2]
Chermette, H. J. Comput. Chem. 1999, 20, 129.doi: 10.1002/(SICI)1096-987X(19990115)20:1 < 129::AIDJCC13 > 3.0.CO; 2-A
-
[3]
Geerlings, P.; De Proft, F.; Langenaeker, W. Chem. Rev. 2003, 103, 1793. doi: 10.1021/cr990029p
-
[4]
De Proft, F.; Geerlings, P. Chem. Rev. 2001, 101, 1451. doi: 10.1021/cr9903205
-
[5]
Ayers, P. W.; Anderson, J. S. M.; Bartolotti, L. J. Int. J. Quantum Chem. 2005, 101, 520. doi: 10.1002/qua.20307
-
[6]
Gazquez, J. L. J. Mex. Chem. Soc. 2008, 52, 3.
-
[7]
Liu, S. B. Acta Phys. -Chim. Sin. 2009, 25, 590. doi: 10.3866/PKU.WHXB20090332
-
[8]
Gross, E. K. U.; Kohn, W. Phys. Rev. Lett. 1985, 55, 2850. doi: 10.1103/PhysRevLett.55.2850
-
[9]
Casida, M. E. Recent Advances in Density Functional Methods; Chong, D. P. Ed.; World Scientific Pub. Co. Inc.: Singapore, 1995; p. 155. http://www.whxb.pku.edu.cn/CN/abstract/abstract30109.shtml
-
[10]
Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford University Press: New York, NY, USA, 1989.
-
[11]
Ayers, P.W.; De Proft, F.; Borgoo, A.; Geerlings, P. J. Chem. Phys. 2007, 126, 224107. doi: 10.1063/1.2736697
-
[12]
Sablon, N.; De Proft, F.; Geerlings, P. J. Phys. Chem. Lett. 2010, 1, 1228. doi: 10.1021/jz1002132
-
[13]
Sablon, N.; De Proft, F.; Ayers, P. W.; Geerlings, P. J. Chem. Theory Comput. 2010, 6, 3671. doi: 10.1021/ct1004577
-
[14]
Fias, S.; Boisdenghien, Z.; Stuyver, T.; Audiffred, M.; Merino, G.; Geerlings, P.; De Proft, F. J. Phys. Chem. A 2013, 117, 3556. doi: 10.1021/jp401760j
-
[15]
Fias, S.; Geerlings, P.; Ayers, P.; De Proft, F. Phys. Chem. Chem. Phys. 2013, 15, 2882. doi: 10.1039/c2cp43612d
-
[16]
Boisdenghien, Z.; Van Alsenoy, C.; De Proft, F.; Geerlings, P. J. Chem. Theory Comp. 2013, 9, 1007. doi: 10.1021/ct300861r
-
[17]
Yang, W.; Cohen, A. J.; De Proft, F.; Geerlings, P. J. Chem. Phys. 2012, 136, 144110. doi: 10.1063/1.3701562
-
[18]
Boisenghien, Z.; Fias, S.; Van Alsenoy, C.; De Proft, F.; Geerlings, P. Phys. Chem. Chem. Phys. 2014, 16, 14614. doi: 10.1039/c4cp01331j
-
[19]
Fias, S.; Boisdenghien, Z.; De Proft, F.; Geerlings, P. J. Chem. Phys. 2014, 141, 184107. doi: 10.1063/1.4900513
-
[20]
Geerlings, P.; Fias, S.; Boisdenghien, Z.; De Proft, F. Chem. Soc. Rev. 2014, 43, 4989. doi: 10.1039/c3cs60456j
-
[21]
Geerlings, P.; Boisdenghien, Z.; De Proft, F.; Fias, S. Theor. Chem. Acc. 2016, 135, 213. doi: 10.1007/s00214-016-1967-9
-
[22]
Stuyver, T.; Fias, S.; De Proft, F.; Fowler, P.; Geerlings, P. J. Chem. Phys. 2015, 142, 094103. doi: 10.1063/1.4913415
-
[23]
Nalewajski, R. F.; Parr, R. G. J. Chem. Phys. 1982, 77, 399. doi: 10.1063/1.443620
-
[24]
Berkowitz, M.; Parr, R. G. J. Chem. Phys. 1988, 88, 2554. doi: 10.1063/1.454034
-
[25]
Senet, P. J. Chem. Phys. 1996, 105, 6471. doi: 10.1063/1.472498
-
[26]
Ayers, P. W.; Parr, R. G. J. Am. Chem. Soc. 2001, 123, 2007. doi: 10.1021/ja002966g
-
[27]
Ayers, P. W. Theor. Chem. Acc. 2001, 106, 271. doi: 10.1007/PL00012385
-
[28]
Liu, S.; Li, T.; Ayers, P. W. J. Chem. Phys. 2009, 131, 114106. doi: 10.1063/1.3231687
-
[29]
Yang, W.; Parr, R. Proc. Natl. Acad. Sci. USA 1985, 82, 6723. doi: 10.1073/pnas.82.20.6723
-
[30]
Mendez, F.; Gazquez, J. L. J. Am. Chem. Soc. 1994, 116, 9298. doi: 10.1021/ja00099a055
-
[31]
Damoun, S.; Van de Woude, G.; Mendez, F.; Geerlings, P. J. Phys. Chem. 1997, 101, 886. doi: 10.1021/jp9611840
-
[32]
Geerlings, P.; De Proft, F. Int. J. Quantum Chem. 2000, 80, 227. doi: 10.1002/1097-461X(2000)80:2 < 227::AID-QUA17 > 3.3.CO; 2-E
-
[33]
Heidar-Zadeh, F.; Richer, M.; Fias, S.; Miranda-Quintana, R. A.; Chan, M.; Franco-Perez, M.; Gonzalez-Espinoza, C. E.; Kim, T. D.; Lanssens, C.; Patel, A. H. G.; et al. Chem. Phys. Lett. 2016, 660, 307. doi: 10.1016/j.cplett.2016.07.039
-
[34]
Kohn, W. Phys. Rev. Lett. 1996, 76, 3168. doi: 10.1103/PhysRevLett.76.3168
-
[35]
Prodan, E.; Kohn, W. Proc. Natl. Acad. Sci. USA 2005, 102, 11635. doi: 10.1073/pnas.0505436102
-
[36]
Fias, S.; Heidar-Zadeh, F.; Geerlings, P.; Ayers, P. W. Proc. Natl. Acad. Sci. USA 2017, 114, 11633. doi: 10.1073/pnas.1615053114
-
[37]
Berkowitz, M.; Ghosh, S. K.; Parr, R. J. Am. Chem. Soc. 1985, 107, 6811. doi: 10.1021/ja00310a011
-
[38]
Ghosh, S. K.; Berkowitz, M. J. Chem. Phys. 1985, 83, 2976. doi: 10.1063/1.449846
-
[39]
Ghosh, S. K. Chem. Phys. Lett. 1990, 172, 77. doi: 10.1016/0009-2614(90)87220-L
-
[40]
Harbola, M. K.; Chattaraj, P. K.; Parr, R. G. Isr. J. Chem. 1991, 31, 395. doi: 10.1002/ijch.v31.4
-
[41]
Langenaeker, W.; De Proft, F.; Geerlings, P. J. Phys. Chem. 1995, 99, 6424. doi: 10.1021/j100017a022
-
[42]
Chamorro, E.; De Proft, F.; Geerlings, P. J. Chem. Phys. 2005, 123, 154104. doi: 10.1063/1.2072907
-
[43]
Torrent-Sucarrat, M.; Salvador, P.; Sola, M.; Geerlings, P. J. Comp. Chem. 2007, 28, 574. doi: 10.1002/jcc.20535
-
[44]
Chattaraj, P.; Roy, D. R.; Geerlings, P.; Torrent-Sucarrat, M. Theor. Chem. Acc. 2007, 118, 923. doi: 10.1007/s00214-007-0373-8
-
[45]
Polanco-Ramirez, C. A.; Franco-Perez, M.; Carmona-Espindola, J.; Gazquez, J. L.; Ayers, P. W. Phys. Chem. Chem. Phys. 2017, 19, 12355. doi: 10.1039/c7cp00691h
-
[46]
Liu, S.; Parr, R. G. J. Chem. Phys. 1997, 106, 5578. doi: 10.1063/1.473580
-
[47]
Lieb, E. H. Int. J. Quantum Chem. 1983, 24, 243. doi: 10.1002/qua.560240302
-
[48]
Eschrig, H. The Fundamentals of Density Functional Theory; Teubner: Stuttgart-Leipzig, Germany, 1996. https://link.springer.com/content/pdf/bfm:978-3-322-97620-8/1.pdf
-
[49]
Kvaal, S.; Ekstrom, U.; Teale, A. M.; Helgaker, T. J. Chem. Phys. 2014, 140, 18A518. doi: 10.1063/1.4867005
-
[50]
Perdew, J.; Parr, R.; Levy, M.; Balduz, J. L. J. Phys. Rev. Lett. 1982, 49, 1691. doi: 10.1103/PhysRevLett.49.1691
-
[51]
Fias, S. ; Geerlings, P. ; De Proft, F. ; Ayers, P. W. in preparation.
-
[52]
Ghosh, S. K.; Berkowitz, M.; Parr, R. G. Proc. Natl. Acad. Sci. USA 1984, 81, 8028. doi: 10.1073/pnas.81.24.8028
-
[53]
Nagy, A.; Parr, R. G. Proc. Indian Acad. Sci. 1994, 106, 217. doi: 10.1007/BF02840745
-
[54]
Nagy, A.; Parr, R. G. J. Mol. Struct. THEOCHEM 2000, 501–502, 101. doi: 10.1016/S0166-1280[99]00418-2
-
[55]
Nagy, A. Int. J. Quantum Chem. 2017, 117, e25396. doi: 10.1002/qua.25396
-
[56]
Callen, H. B. Thermodynamics and an Introduction to Thermostatistics; John Wiley: New York, NY, USA, 1985. http://www.oalib.com/references/13135886
-
[57]
Prigogine, I.; Defay, R. Chemical Thermodynamics; Longman: London, UK, 1954. https://www.researchgate.net/publication/223991489_On_the_theoretical_determination_of_the_Prigogine-Defay_ratio_in_glass_transition
-
[58]
Berry, R. S.; Rice, S. A.; Ross, J. Physical Chemistry; Wiley: New York, NY, USA, 1980.
-
[59]
Cardenas, C.; Echegaray, E.; Chakraborty, D.; Anderson, J. S. M.; Ayers, P. W. J. Chem. Phys. 2009, 130, 244105. doi: 10.1063/1.3151599
-
[60]
Ayers, P. W. Phys. Rev. A 2006, 73, 012513. doi: 10.1103/PhysRevA.73.012513
-
[61]
Franco-Perez, M.; Ayers, P. W.; Gazquez, J. L.; Vela, A. J. Chem. Phys. 2015, 143, 244117. doi: 10.1063/1.4938422
-
[62]
Franco-Perez, M.; Gazquez, J. L.; Ayers, P. W.; Vela, A. J. Chem. Phys. 2015, 143, 154103. doi: 10.1063/1.4932539
-
[1]
-

计量
- PDF下载量: 10
- 文章访问数: 364
- HTML全文浏览量: 26