Prediction of Blood-to-Brain Barrier Partitioning of Drugs and Organic Compounds Using a QSPR Approach

GOLMOHAMMADI Hassan DASHTBOZORGI Zahra KHOOSHECHIN Sajad

引用本文: GOLMOHAMMADI Hassan,  DASHTBOZORGI Zahra,  KHOOSHECHIN Sajad. Prediction of Blood-to-Brain Barrier Partitioning of Drugs and Organic Compounds Using a QSPR Approach[J]. 物理化学学报, 2017, 33(6): 1160-1170. doi: 10.3866/PKU.WHXB201704051 shu
Citation:  GOLMOHAMMADI Hassan,  DASHTBOZORGI Zahra,  KHOOSHECHIN Sajad. Prediction of Blood-to-Brain Barrier Partitioning of Drugs and Organic Compounds Using a QSPR Approach[J]. Acta Physico-Chimica Sinica, 2017, 33(6): 1160-1170. doi: 10.3866/PKU.WHXB201704051 shu

Prediction of Blood-to-Brain Barrier Partitioning of Drugs and Organic Compounds Using a QSPR Approach

摘要: The purpose of this study was to develop a quantitative structure-property relationship (QSPR) model based on the enhanced replacement method (ERM) and support vector machine (SVM) to predict the blood-to-brain barrier partitioning behavior (logBB) of various drugs and organic compounds. Different molecular descriptors were calculated using a dragon package to represent the molecular structures of the compounds studied. The enhanced replacement method (ERM) was used to select the variables and construct the SVM model. The correlation coefficient, R2, between experimental results and predicted logBB was 0.878 and 0.986, respectively. The results obtained demonstrated that, for all compounds, the logBB values estimated by SVM agreed with the experimental data, demonstrating that SVM is an effective method for model development, and can be used as a powerful chemometric tool in QSPR studies.

English

    1. [1]

      (1) Goldstein, G. W.; Betz, A. L. Sci. Am. 1986, 255, 74. doi: 10.1038/scientificamerican0986-74

    2. [2]

      (2) Greig, N. H.; Brossi, A.; Pei, X. F.; Ingram, D. K.; Soncrant, T. T. New Concepts of a Blood-Brain Barrier; Plenum: New York, NY, 1995; pp 251-264. doi: 10.1007/978-1-4899-1054-7-25

    3. [3]

      (3) Weiss, N.; Miller, F.; Cazaubon, S.; Couraud, P. O. Rev. Neurol. 2009, 165, 1010. doi: 10.1016/j.neurol.2009.04.013.

    4. [4]

      (4) Partridge, W. M. J. Neurochem. 1998, 70, 1781. doi: 10.1046/j.1471-4159.1998.70051781.x

    5. [5]

      (5) Pardridge, W. M. Drug Discov. Today 2001, 6, 1. doi: 10.1016/S1359-6446(00)01583-X

    6. [6]

      (6) Tamai, I.; Tsuji, A. Adv. Drug. Deliv. Rev. 1996, 19, 401. doi: 10.1016/0169-409X(96)00011-7

    7. [7]

      (7) Eddy, E. P.; Maleef, B. E.; Hart, T. K.; Smith, P. L. Adv. Drug Deliv. Rev. 1997, 23, 185. doi: 10.1016/S0169-409X(96)00435-8

    8. [8]

      (8) Reichel, A.; Begley, D. J. Pharm. Res. 1998, 15, 1270. doi: 10.1023/A:1011904311149

    9. [9]

      (9) Cecchelli, R.; Dehouck, B.; Descamps, L.; Fenart, L.; Buee-Scherrer, V.; Duhem, C.; Landquist, S.; Rentfel, M.; Torpier, G.; Dehouck, M. P. Adv. Drug Deliv. Rev. 1999, 36, 165. doi: 10.1016/S0169-409X(98)00083-0

    10. [10]

      (10) Bujak, R.; Struck-Lewicka, W.; Kaliszan, M.; Kaliszan, R.; Markuszewski, M. J. J. Pharm. Bio. Anal. 2015, 108, 29. doi: 10.1016/j.jpba.2015.01.046

    11. [11]

      (11) Konovalov, D. A.; Coomans, D.; Deconinck, E.; Vander Heyden, Y. J. Chem. Inf. Model. 2007, 47, 1648. doi: 10.1021/ci700100f

    12. [12]

      (12) Nikolic, K.; Filipic, S.; Smoliński, A.; Kaliszan, R.; Agbaba, D. J. Pharm. Pharm. Sci. 2013, 166, 22. doi: 10.18433/J3JK5P

    13. [13]

      (13) Shityakov, S.; Neuhaus, W.; Dandekar, T.; Förster, C. Int. J. Comput. Bio. Dr. Desig. 2013, 6, 146. doi: 10.1504/IJCBDD.2013.052195

    14. [14]

      (14) Hemmateenejad, B.; Miri, R.; Safarpour, M. A.; Mehdipour, A. R. J. Comput. Chem. 2006, 72, 1125. doi: 10.1002/jcc.20437

    15. [15]

      (15) Guerra, A.; Páez, J. A.; Campillo, N. E. Mol. Inf. 2008, 27, 586. doi: 10.1002/qsar.200710019

    16. [16]

      (16) Vapnik, V. Estimation of Dependencies Based on Empirical Data; Springer: Berlin, 1982. doi: 10.1007/0-387-34239-7

    17. [17]

      (17) Burges, C. J. C. Data Min. Knowl. Disc. 1998, 2, 121. doi: 10.1023/A:1009715923555

    18. [18]

      (18) Golmohammadi, H.; Dashtbozorgi, Z.; Acree, W. E., Jr. Mol. Inf. 2012, 31, 867. doi: 10.1002/minf.201200091

    19. [19]

      (19) Zhang, L.; Zhu, H.; Oprea, T. I.; Golbraikh, A.; Tropsha, A. Pharm. Res. 2008, 25, 1902. doi: 10.1007/s11095-008-9609-0

    20. [20]

      (20) Yang, S.; Huang, Q.; Li, L. L.; Ma, C. Y.; Zhang, H.; Bai, R.; Teng, Q. Z.; Xiang, M. L.; Wei, Y. Q. Art. Intel. Med. 2009, 46, 155. doi: 10.1016/j.artmed.2008.07.001

    21. [21]

      (21) Norinder, U. Neurocomuting 2003, 55, 337. doi: 10.1016/S0925-2312(03)00374-6

    22. [22]

      (22) Cai, Y. D.; Liu, X. J.; Xu, X. B.; Chou, K. C. Comput. Chem. 2002, 26, 293. doi: 10.1016/S0097-8485(01)00113-9

    23. [23]

      (23) Bao, L.; Sun, Z. R. FEBS Lett. 2002, 521, 109. doi: 10.1016/S0014-5793(02)02835-1

    24. [24]

      (24) Zhao, C. Y.; Zhang, R. S.; Liu, H. X.; Xue, C. X.; Zhao, S. G.; Zhou, X. F.; Liu, M. C.; Fan, B. T. J. Chem. Inf. Comput. Sci. 2004, 44, 2040. doi: 10.1021/ci049877y

    25. [25]

      (25) Muehlbacher, M.; Spitzer, G. M.; Liedl, K. R.; Kornhuber, J. J. Comput. Aided Mol. Des. 2011, 25, 1095. doi: 10.1007/s10822-011-9478-1

    26. [26]

      (26) Hyperchem, Re. 4. for Windows; Autodesk: Sansalito, CA, 1995.

    27. [27]

      (27) Todeschini, R.; Consonni, V.; Pavan, M. Dragon Software; Talete SRL: Milan, Italy, 2002.

    28. [28]

      (28) Levet, A.; Bordes, C.; Clément, Y.; Mignon, P.; Chermette, H.; Marote, P.; Cren-Olivé, C.; Lantéri, P. Chemosphere 2013, 93, 1094. doi: 10.1016/j.chemosphere.2013.06.002

    29. [29]

      (29) Duchowicz, P. R.; Castro, E. A.; Fernández, F. M.; González, M. P. Chem. Phys. Lett. 2005, 412, 376. doi: 10.1016/j.cplett.2005.07.016

    30. [30]

      (30) MATLAB 7.0, The Mathworks Inc.: Natick, MA, USA, 2005, http://www.mathworks.com.

    31. [31]

      (31) Golmohammadi, H.; Dashtbozorgi, Z.; Acree, W. E., Jr. Struct. Chem. 2013, 24, 1799. doi: 10.1007/s11224-013-0222-4

    32. [32]

      (32) Golmohammadi, H.; Dashtbozorgi, Z.; Acree, W. E., Jr. Phys. Chem. Liq. 2013, 51, 182. doi: 10.1080/00319104.2012.708932

    33. [33]

      (33) Dashtbozorgi, Z.; Golmohammadi, H.; Acree, W. E., Jr. Thermochim. Acta 2012, 539, 7. doi: 10.1016/j.tca.2012.03.017

    34. [34]

      (34) Golmohammadi, H.; Dashtbozorgi, Z.; Acree, W. E., Jr. Mol. Inf. 2012, 31, 867. doi: 10.1002/minf.201200091

    35. [35]

      (35) Zhou, X.; Li, Z.; Dai, Z.; Zou, X. J. Mol. Graph. Model. 2010, 29, 188. doi: 10.1016/j.jmgm.2010.06.002

    36. [36]

      (36) Miao, Y.; Su, H.; Xu, O.; Chu, J. Ind. Eng. Chem. Res. 2009, 48, 10903. doi: 10.1021/ie801629f

    37. [37]

      (37) Li, H.; Liang, Y.; Xu, Q. Chemometr. Intell. Lab. Syst. 2009, 95, 188. doi: 10.1016/j.chemolab.2008.10.007

    38. [38]

      (38) Rojas, C.; Duchowicz, P. R.; Tripaldi, P.; Pis Diez, R. Chemometr. Intell. Lab. Syst. 2015, 140, 126. doi: 10.1016/j.chemolab.2014.09.020

    39. [39]

      (39) Mercader, G.; Duchowicz, P. R.; Fernández, F. M.; Castro, E. A. Chemometr. Intell. Lab. Syst. 2008, 92, 138. doi: 10.1016/j.chemolab.2008.02.005

    40. [40]

      (40) Davis, L. Handbook of Genetic Algorithms; Van Nostrand Reinhold: New York: 1991. doi: 10.1017/S0269888900006068

    41. [41]

      (41) Cao, D. S.; Liang, Y. Z.; Xu, Q. S.; Li, H. D.; Chen, X. J. Comput. Chem. 2010, 31, 592. doi: 10.1002/jcc.21351

    42. [42]

      (42) Yan, J.; Huang, J. H.; He, M.; Lu, H. B.; Yang, R.; Kong, B.; Xu, Q. S.; Liang, Y. Z. J. Sep. Sci. 2013, 36, 2464. doi: 10.1002/jssc.201300254

    43. [43]

      (43) Cao, D. S.; Liang, Y. Z.; Xu, Q. S.; Yun, Y. H.; Li, H. D. J. Comput. Aided Mol. Des. 2011, 25, 67. doi: 10.1007/s10822-010-9401-1

    44. [44]

      (44) Eriksson, L.; Jaworska, J.; Worth, A. P.; Cronin, M. T.; McDowell, R. M.; Gramatica, P. Health Perspect. 2003, 111, 1361. doi: 10.1289/ehp.5758

    45. [45]

      (45) Golbraikh, A.; Shen, M.; Xiao, Z.; Xiao, Y.; Lee, K. H.; Tropsha, A. J. Comput. Aided Mol. Des. 2003, 17, 241. doi: 10.1023/A:1025386326946

    46. [46]

      (46) Tang, K.; Li, T. Anal. Chim. Acta 2003, 476, 85. doi: 10.1016/S0003-2670(02)01257-6

    47. [47]

      (47) de Campos, L. J.; de Melo, E. B. J. Mol. Graph. Model. 2014, 54, 19. doi: 10.1016/j.jmgm.2014.08.004

    48. [48]

      (48) Golbraikh, A.; Tropsha, A. J. Mol. Graph. Model. 2002, 20, 269. doi: 10.1016/S1093-3263(01)00123-1

    49. [49]

      (49) Zhao, C. Y.; Zhang, H. X.; Zhang, X. Y.; Liu, M. C.; Hu, Z. D.; Fan, B. T. Toxicol. 2006, 217, 105. doi: 10.1016/j.tox.2005.08.019

    50. [50]

      (50) Agrawal, V. K.; Khadikar, P. V. Bioorg. Med. Chem. 2001, 911, 3035. doi: 10.1016/S0968-0896(01)00211-5

    51. [51]

      (51) Pourbasheer, E.; Riahi, S.; Ganjali, M. R.; Norouzi, P. J. Enzyme. Inhib. Med. Chem. 2010, 256, 844. doi: 10.3109/14756361003757893

    52. [52]

      (52) Kier, L. B. J. Pharm. Sci. 1980, 69, 807. doi: 10.1002/jps.2600690914

    53. [53]

      (53) Bonchev, D. Information Theoretic Indices for Characterization of Chemical Structure; Wiley-Interscience: New York, 1983. doi: 10.1002/jps.2600730950

    54. [54]

      (54) Sliwoski, G.; Mendenhall, J.; Meiler, J. J. Comput. Aided Mol. Des. 2016, 30, 209. doi: 10.1007/s10822-015-9893-9

    55. [55]

      (55) Todeschini, R.; Consonni, V. Handbook of Molecular Descriptors, In: Methods and Principles in Medicinal Chemistry; Mannhold, R., Kubinyi, H., Timmerman, H. Eds.; Wiley-VCH: Weinheim, 2000. doi: 10.1002/9783527613106

    56. [56]

      (56) Silverman, B. D.; Platt, D. E. J. Med. Chem. 1996, 39, 2129. doi: 10.1021/jm950589q

    57. [57]

      (57) Balaban, A. T. Theor. Chim. Acta 1979, 53, 355. doi: 10.1007/BF00555695

    58. [58]

      (58) Kier, L. B.; Hall, L. H. Molecular Connectivity in Structure-Activity Analysis; Wiley: New York, 1986. doi: 10.1002/aic.690331230

    59. [59]

      (59) Hall, L. H.; Kier, L. B. J. Mol. Graph. Model. 2001, 20, 4. doi: 10.1016/S1093-3263(01)00097-3

    60. [60]

      (60) Randic, M. J. Mol. Graph. Model. 2001, 20, 19. doi: 10.1016/S1093-3263(01)00098-5

    61. [61]

      (61) Soltzberg, L. J.; Wilkins, C. L. J. Am. Chem. Soc. 1977, 99, 439. doi: 10.1021/ja00444a021

    62. [62]

      (62) Kovtun, D. M.; Kochikov, I. V.; Tarasov, Y. I. J. Phys. Chem. A 2015, 119, 1657. doi: 10.1021/jp5082774

    63. [63]

      (63) Ma, S.; Lv, M.; Deng, F.; Zhang, X.; Zhai, H.; Lv, W. J. Hazard. Mater. 2015, 283, 591. doi: 10.1016/j.jhazmat.2014.10.011

    64. [64]

      (64) Kortagere, S.; Chekmarev, D.; Welsh, W. J.; Ekins, S. Pharm. Res. 2008, 25, 1836. doi: 10.1007/s11095-008-9584-5

    65. [65]

      (65) Li, H.; Yap, C. W.; Ung, C. Y.; Xue, Y.; Cao, Z. W.; Chen, Y. Z. J. Chem. Inf. Model. 2005, 45, 1376. doi: 10.1021/ci050135u

    66. [66]

      (66) Gerebtzoff, G.; Seelig, A. J. Chem. Inf. Model. 2006, 46, 2638. doi: 10.1021/ci0600814

    67. [67]

      (67) Muehlbacher, M.; Spitzer, G. M.; Liedl, K. R.; Kornhuber, J. J. Comput. Aided Mol. Des. 2011, 25, 1095. doi: 10.1007/s10822-011-9478-1

  • 加载中
计量
  • PDF下载量:  1
  • 文章访问数:  435
  • HTML全文浏览量:  11
文章相关
  • 发布日期:  2017-04-05
  • 收稿日期:  2017-02-05
  • 修回日期:  2017-03-02
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章