Citation: ZHOU Ting-Ting, SONG Hua-Jie, HUANG Feng-Lei. The Slip and Anisotropy of TATB Crystal under Shock Loading via Molecular Dynamics Simulation[J]. Acta Physico-Chimica Sinica, 2017, 33(5): 949-959. doi: 10.3866/PKU.WHXB201702152
冲击载荷下TATB晶体滑移和各向异性的分子动力学研究
English
The Slip and Anisotropy of TATB Crystal under Shock Loading via Molecular Dynamics Simulation
-
Key words:
- TATB
- / Shock
- / Slip
- / Anisotropy
- / ReaxFF
- / Molecular dynamics
-
-
[1]
Jackson, C. L.; Wing, J. F. J. Am. Chem. Soc. 1887, 9, 354.
-
[2]
Travis, J. R. TATB: The IHE exemplar. Report No. LA-UR-92-3883, Los Alamos National Laboratory, NM, USA, 1992.
-
[3]
Dobratz, B. M. The insensitive high explosivetriaminotrinitrobenzene (TATB): Development andcharacterization-1888 to 1994. Report No. LA-13014-H, LosAlamos National Laboratory, NM, USA, 1995.
-
[4]
Rice, S. F.; Simpson, R. L. The Unusual Stability of TATB: AReview of the Scientific Literature. Report No. UCRL-LR-103683, Lawrence Livermore National Laboratory, Livermore, CA, USA 1990.
-
[5]
Cady, H. H.; Larson, A. C. Acta Cryst. 1965, 18, 485.doi: 10.1107/S0365110X6500107X
-
[6]
Agrawal, J. P. Progr. Energy Combust. Sci. 1998, 24, 1.doi: 10.1016/S0360-1285(97)00015-4
-
[7]
Wu, C. J.; Fried, L. E. J. Phys. Chem. A 2000, 104, 6447. doi: 10.1021/jp001019r
-
[8]
Xiao, H. M. The Theory of the Molecular Orbits forNitrocompound; National Defence Industry Press: Beijing, 1993. [肖鹤鸣. 硝基化合物的分子轨道理论. 北京: 国防工业出版社, 1993.]
-
[9]
Manaa, M. R.; Gee, R. H.; Fried, L. E. J. Phys. Chem. A 2002, 106, 8806. doi: 10.1021/jp0259972
-
[10]
Roszak, S.; Gee, R. H.; Balasubramanian, K.; Fried, L. E.Chem. Phys. Lett. 2003, 374, 286. doi: 10.1016/S0009-2614(03)00727-9
-
[11]
Zhang, C. Y.; Wang, X.; Huang, H. J. Am. Chem. Soc. 2008, 130, 8359. doi: 10.1021/ja800712e
-
[12]
Ojeda, O. U.; Cagin, T. J. Phys. Chem. B 2011, 115, 12085.doi: 10.1021/jp2007649
-
[13]
Pravica, M.; Yulga, B.; Liu, Z. X.; Tschauner, O. Phys. Rev. B 2007, 76, 064102. doi: 10.1103/PhysRevB.76.064102
-
[14]
Pravica, M.; Yulga, B.; Tkachev, S.; Liu, Z. X. J. Phys. Chem. A 2009, 113, 9133. doi: 10.1021/jp903584x
-
[15]
Manaa, M. R.; Fried, L. E. J. Phys. Chem. C 2012, 116, 2116.doi: 10.1021/jp205920n
-
[16]
Dong, H. S. Chin. J. Energy Mater. 2004, 12, 1.
-
[17]
Kolb, J. R.; Rizzo, H. F. Propellants Explos. Pyrotech. 1979, 4, 10. doi: 10.1002/prep.19790040104
-
[18]
Gee, R. H.; Roszak, S.; Balasubramanian, K.; Fried, L. E. J.Chem. Phys. 2004, 120, 7059. doi: 10.1063/1.1676120
-
[19]
Sun, J.; Kang, B.; Xue, C.; Liu, Y.; Xia, Y. X.; Liu, X. F.; Zhang, W. Journal of Energetic Materials 2010, 28, 189. doi: 10.1080/07370650903401254
-
[20]
Taylor, D. E. J. Phys. Chem. A 2013, 117, 3507. doi: 10.1021/jp4005289
-
[21]
Bedrov, D.; Borodin, O.; Smith, G. D.; Sewell, T. D.; Dattelbaum, D. M.; Stevens, L. L. J. Chem. Phys. 2009, 131, 224703. doi: 10.1063/1.3264972
-
[22]
Kroonblawd, M. P.; Sewell, T. D. J. Chem. Phys. 2013, 139, 074503. doi: 10.1063/1.4816667
-
[23]
Kroonblawd, M. P.; Sewell, T. D. J. Chem. Phys. 2014, 141, 184501. doi: 10.1063/1.4901206
-
[24]
Mathew, N.; Sewell, T. D.; Thompson, D. L. J. Chem. Phys. 2015, 143, 094706. doi: 10.1063/1.4929806
-
[25]
Liu, H.; Zhao, J.; Du, J.; Gong, Z.; Ji, G. F.; Wei, D. Q. Phys.Lett. A 2007, 367, 383. doi: 10.1016/j.physleta.2007.03.048
-
[26]
Stevens, L. L.; Velisavljevic, N.; Hooks, D. E.; Dattelbaum, D.M. Propellants, Explos. Pyrotech. 2008, 33, 286. doi: 10.1002/prep.200700270
-
[27]
Valenzano, L.; Slough, W. J.; Perger, W. AIP Conf. Proc. 2012, 1426, 1191. doi: 10.1063/1.3686493
-
[28]
Budzevich, M. M.; Landerville, A. C.; Conroy, M.W.; Lin, Y.; Oleynik, I. I.; White, C. T. J. Appl. Phys. 2010, 107, 113524. doi: 10.1063/1.3361407
-
[29]
Bowden, F. P.; Yoffe, A. D. Initiation and Growth of Explosionin Liquids and Solids, 1st ed.; Cambridge University Press:Cambridge, 1985.
-
[30]
Dick, J. J.; Mulford, R. N.; Spencer, W. J.; Pettit, D. R.; Garcia, E.; Shaw, D. C. J. Appl. Phys. 1991, 70, 3572. doi: 10.1063/1.349253
-
[31]
Armstrong, R.W.; Ammon, H. L.; Elban, W. L.; Tsai, D. H.Thermochim. Acta 2002, 384, 303. doi: 10.1016/S0040-6031(01)00786-9
-
[32]
Dick, J. J.; Ritchie, J. P. J. Appl. Phys. 1994, 76, 2726. doi: 10.1063/1.357576
-
[33]
Dick, J. J. J. Appl. Phys. 1997, 81, 601. doi: 10.1063/1.364201
-
[34]
Yoo, C. S.; Holmes, N. C.; Souers, P. C.; Wu, C. J.; Ree, F. H.; Dick, J. J. J. Appl. Phys. 2000, 88, 70. doi: 10.1063/1.373626
-
[35]
Dick, J. J.; Hooks, D. E.; Menikoff, R.; Martinez, A. R. J. Appl.Phys. 2004, 96, 374. doi: 10.1063/1.1757026
-
[36]
Menikoff, R.; Dick, J. J.; Hooks, D. E. J. Appl. Phys. 2005, 97, 023529. doi: 10.1063/1.1828602
-
[37]
Jaramillo, E.; Sewell, T. D.; Strachan, A. Phys. Rev. B 2007, 76, 064112. doi: 10.1103/PhysRevB.76.064112
-
[38]
Ramos, K. J.; Hooks, D. E.; Sewell, T. D.; Cawkwell, M. J. J.Appl. Phys. 2010, 108, 066105. doi: 10.1063/1.3485807
-
[39]
Cawkwell, M. J.; Ramos, K. J.; Hooks, D. E.; Sewell, T. D. J.Appl. Phys. 2010, 107, 063512. doi: 10.1063/1.3305630
-
[40]
Bedrov, D.; Hooper, J. B.; Smith, G. D.; Sewell, T. D. J. Chem.Phys. 2009, 131, 034712. doi: 10.1063/1.3177350
-
[41]
Eason, R. M.; Sewell, T. D. J. Phys. Chem. C 2012, 116, 2226.doi: 10.1021/jp206826d
-
[42]
Conroy, M.W.; Oleynik, I. I.; Zybin, S. V.; White, C. T. Phys.Rev. B 2008, 77, 094107. doi: 10.1103/PhysRevB.77.094107
-
[43]
Conroy, M.W.; Oleynik, I. I.; Zybin, S. V.; White, C. T. J. Appl.Phys. 2008, 104, 053506. doi: 10.1063/1.2973689
-
[44]
Zybin, S. V.; GoddardI, W. A., Ⅱ; Xu, P.; van Duin, A. C. T.; Thompson, A. P. Appl. Phys. Lett. 2010, 96, 081918.doi: 10.1063/1.3323103
-
[45]
An, Q.; Liu, Y.; Zybin S. V.; Kim, H.; Goddard Ⅲ, W. A. J.Phys. Chem. C 2012, 116, 10198. doi: 10.1021/jp300711m
-
[46]
Zhou, T. T.; Zybin, S. V.; Liu, Y.; Huang, F. L.; Goddard, W. A.Ⅲ. J. Appl. Phys. 2012, 111, 124904. doi: 10.1063/1.4729114
-
[47]
Song, H. J.; Zhou, T. T.; Huang, F. L.; Hong, T. Acta Phys.-Chim. Sin. 2014, 30, 2024. [宋华杰, 周婷婷, 黄风雷, 洪滔.物理化学学报, 2014, 30, 2024.] doi: 10.3866/PKU.WHXB201409192
-
[48]
Kuklja, M. M.; Rashkeev, S. N. Appl. Phys. Lett. 2007, 90, 151913. doi: 10.1063/1.2719031
-
[49]
Kuklja, M. M.; Rashkeev, S. N. J. Phys. Chem. Lett. 2010, 1, 363. doi: 10.1021/jz9001967
-
[50]
Kuklja, M. M.; Rashkeev, S. N. Journal of Energetic Materials 2010, 28, 66. doi: 10.1080/07370651003639397
-
[51]
Zhang, C. Y. J. Phys. Chem. B 2007, 111, 14295. doi: 10.1021/jp0770357
-
[52]
Mathew, N.; Sewell, T. D. Philosophical Magazine 2015, 95, 424. doi: 10.1080/14786435.2015.1006706
-
[53]
van Duin, A. C. T.; Dasgupta, S.; Lorant, F.; Goddard Ⅲ, W. A.J. Phys. Chem. A 2001, 105, 9396. doi: 10.1021/jp004368u
-
[54]
Zhou, T. T.; Shi, Y. D.; Huang, F. L. Acta Phys. -Chim. Sin. 2012, 28, 2605. [周婷婷, 石一丁, 黄风雷. 物理化学学报, 2012, 28, 2605.] doi: 10.3866/PKU.WHXB201208031
-
[55]
Strachan, A.; van Duin, A. C. T.; Dasgupta, S.; Chakraborty, D.; Goddard Ⅲ, W. A. Phys. Rev. Lett. 2003, 91, 098301.doi: 10.1103/PhysRevLett.91.098301
-
[56]
Nomura, K.; Kalia, R. K.; Nakano, A.; Vashishta, P. Appl. Phys.Lett. 2007, 91, 183109. doi: 10.1063/1.2804557
-
[57]
An, Q.; Zybin, S. V.; Goddard Ⅲ, W. A.; Botero, A. J.; Blanco, M.; Luo, S. N. Phys. Rev. B 2011, 84, 220101. doi: 10.1103/PhysRevB.84.220101
-
[58]
Liu, L. C.; Liu, Y.; Zybin, S. V.; Goddard Ⅲ, W. A. J. Phys.Chem. A 2011, 115, 11016. doi: 10.1021/jp201599t
-
[59]
Zhou, T. T.; Lou, J. F.; Zhang, Y. G.; Song, H. J.; Huang, F. L.Phys. Chem. Chem. Phys. 2016, 18, 17627. doi: 10.1039/C6CP02015A
-
[60]
Wang, Y. N.; Chen, S. J.; Dong, X. C. Dislocation Theory andIts Application; Metallurgical Industry Press: Beijing, 2007. [王亚男, 陈树江, 董希淳. 位错理论及其应用. 北京: 冶金工业出版社, 2007.]
-
[61]
Thompson, A. P. General Reactive Atomistic SimulationPackage; Sandia National Laboratories: NM, USA 2005.
-
[1]
计量
- PDF下载量: 2
- 文章访问数: 378
- HTML全文浏览量: 65