基于流体动力单细胞高效捕获的微流控芯片结构研究进展

潘婷 武园园 郭广生 汪夏燕

引用本文: 潘婷, 武园园, 郭广生, 汪夏燕. 基于流体动力单细胞高效捕获的微流控芯片结构研究进展[J]. 分析化学, 2023, 51(6): 934-944. doi: 10.19756/j.issn.0253-3820.231008 shu
Citation:  PAN Ting,  WU Yuan-Yuan,  GUO Guang-Sheng,  WANG Xia-Yan. Advances in Microfluidic Chip Structures Based on Hydrodynamics of Efficient Single-Cell Capture[J]. Chinese Journal of Analytical Chemistry, 2023, 51(6): 934-944. doi: 10.19756/j.issn.0253-3820.231008 shu

基于流体动力单细胞高效捕获的微流控芯片结构研究进展

    通讯作者: 武园园,E-mail:yuanyuanwu@bjut.edu.cn; 汪夏燕,E-mail:xiayanwang@bjut.edu.cn
  • 基金项目:

    国家自然科学基金项目(Nos.22127805,22176230)、北京高校卓越青年科学家计划项目(No.BJJWZYJH01201910005017)和中国博士后科学基金项目(No.2022M710277)资助。

摘要: 单细胞分析对于重大疾病的早期诊断及治疗、药物筛选和生理病理过程的研究具有重要意义。微流控芯片能够精确控制单细胞的微环境,实时监测单细胞的行为,已成为单细胞分析的强大工具。单细胞捕获是单细胞分析的重要步骤。目前已报道了多种微流控芯片用于单细胞捕获的方法,其中基于流体动力的微流控芯片单细胞捕获方法具有操作方便、单细胞捕获效率高等优点,受到研究人员的广泛关注及使用。为了全面了解基于流体动力的微流控芯片单细胞捕获方法的研究现状,掌握单细胞高效捕获的微流控芯片结构设计,实现单细胞精准快速分析,本文综述了基于流体动力的单细胞高效捕获(>70%)原理及微流控芯片结构,根据结构设计不同分为微井结构、微柱结构和旁路通道结构,介绍了单细胞高效捕获的微流控芯片优化过程,总结了微流控芯片的材质、结构特点及单细胞捕获效率等,对不同单细胞捕获结构的优势及不足进行了分析。最后,对基于流体动力的微流控芯片单细胞捕获方法的发展趋势进行了展望。

English


    1. [1]

      SUN J, GAO L, WANG L, SUN X. Talanta, 2021, 234:122671.SUN J, GAO L, WANG L, SUN X. Talanta, 2021, 234:122671.

    2. [2]

      LUO X, CHEN J Y, ATAEI M, LEE A. Biosensors, 2022, 12(2):58.LUO X, CHEN J Y, ATAEI M, LEE A. Biosensors, 2022, 12(2):58.

    3. [3]

      LIU Y, CHEN L, YU J, YE L, HU H, WANG J, WU B. Environ. Sci. Technol., 2022, 56(16):11132-11145.LIU Y, CHEN L, YU J, YE L, HU H, WANG J, WU B. Environ. Sci. Technol., 2022, 56(16):11132-11145.

    4. [4]

      WANG C, HU W, GUAN L, YANG X, LIANG Q. Chin. Chem. Lett., 2022, 33(6):2883-2892.WANG C, HU W, GUAN L, YANG X, LIANG Q. Chin. Chem. Lett., 2022, 33(6):2883-2892.

    5. [5]

      ABDULLA A, ZHANG Z, AHMAD K Z, WARDEN A R, LI H, DING X. Biosens. Bioelectron., 2022, 201:113965.ABDULLA A, ZHANG Z, AHMAD K Z, WARDEN A R, LI H, DING X. Biosens. Bioelectron., 2022, 201:113965.

    6. [6]

      YANG W, QIN Y, WANG Z, YU T, CHEN Y, GE Z. Sens. Actuators, A, 2022, 333:113229.YANG W, QIN Y, WANG Z, YU T, CHEN Y, GE Z. Sens. Actuators, A, 2022, 333:113229.

    7. [7]

      PARK J, PARK C, SUGITANI Y, FUJII T, KIM S H. Lab Chip, 2022, 22(16):3000-3007.PARK J, PARK C, SUGITANI Y, FUJII T, KIM S H. Lab Chip, 2022, 22(16):3000-3007.

    8. [8]

      ZHANG Nai-Qian, FANG Qun. Chin. J. Anal. Chem., 2021, 49(11):1779-1991. 张乃倩, 方群. 分析化学, 2021, 49(11):1779-1991.

    9. [9]

      XU Lin-Long, JIN Zhi-Ming, FAN Yi-Qiang. Chin. J. Anal. Chem., 2022, 50(4):506-515. 徐林龙, 金志明, 范一强. 分析化学, 2022, 50(4):506-515.

    10. [10]

      ZHOU W, YAN Y, GUO Q, JI H, WANG H, XU T, MAKABEL B, PILARSKY C, HE G, YU X, ZHANG J. J. Nanobiotechnol., 2021, 19(1):312.ZHOU W, YAN Y, GUO Q, JI H, WANG H, XU T, MAKABEL B, PILARSKY C, HE G, YU X, ZHANG J. J. Nanobiotechnol., 2021, 19(1):312.

    11. [11]

      PANG L, DING J, LIU X X, YUAN H, GE Y, FAN J, FAN S K. TrAC, Trends Anal. Chem., 2020, 129:115940.PANG L, DING J, LIU X X, YUAN H, GE Y, FAN J, FAN S K. TrAC, Trends Anal. Chem., 2020, 129:115940.

    12. [12]

      FALLAHI H, CHA H, ADELNIA H, DAI Y, TA H T, YADAV S, ZHANG J, NGUYEN N T. Nanoscale Horiz., 2022, 7(4):414-424.FALLAHI H, CHA H, ADELNIA H, DAI Y, TA H T, YADAV S, ZHANG J, NGUYEN N T. Nanoscale Horiz., 2022, 7(4):414-424.

    13. [13]

      ZHANG H, LU M, XIONG Z, YANG J, TAN M, HUANG L, ZHU X, LU Z, LIANG Z, LIU H. Lab Chip, 2022, 22(10):1951-1961.ZHANG H, LU M, XIONG Z, YANG J, TAN M, HUANG L, ZHU X, LU Z, LIANG Z, LIU H. Lab Chip, 2022, 22(10):1951-1961.

    14. [14]

      LIU Y C, ANSARYAN S, LI X, ARVELO E R, ALTUG H. Biosens. Bioelectron., 2022, 202:113955.LIU Y C, ANSARYAN S, LI X, ARVELO E R, ALTUG H. Biosens. Bioelectron., 2022, 202:113955.

    15. [15]

      ZHANG W, LI Q, JIA F, HU Z, WEI Z. Anal. Chem., 2021, 93(29):10099-10105.ZHANG W, LI Q, JIA F, HU Z, WEI Z. Anal. Chem., 2021, 93(29):10099-10105.

    16. [16]

      MURALIDHARAN A, PESCH G R, HUBBE H, REMS L, NOURI-GOUSHKI M, BOUKANY P E. Bioelectrochemistry, 2022, 147:108197.MURALIDHARAN A, PESCH G R, HUBBE H, REMS L, NOURI-GOUSHKI M, BOUKANY P E. Bioelectrochemistry, 2022, 147:108197.

    17. [17]

      MURPHY T W, ZHANG Q, NALER L B, MA S, LU C. Analyst, 2017, 143(1):60-80.MURPHY T W, ZHANG Q, NALER L B, MA S, LU C. Analyst, 2017, 143(1):60-80.

    18. [18]

      WANG H, ENDERS A, PREUSS J A, BAHNEMANN J, HEISTERKAMP A, TORRES-MAPA M L. Sci. Rep., 2021, 11(1):14584.WANG H, ENDERS A, PREUSS J A, BAHNEMANN J, HEISTERKAMP A, TORRES-MAPA M L. Sci. Rep., 2021, 11(1):14584.

    19. [19]

      RICHARD C, DEVENDRAN C, ASHTIANI D, CADARSO V J, NEILD A. Lab Chip, 2022, 22(18):3533-3544.RICHARD C, DEVENDRAN C, ASHTIANI D, CADARSO V J, NEILD A. Lab Chip, 2022, 22(18):3533-3544.

    20. [20]

      VALIZADEH A, KHOSROUSHAHI A Y. Anal. Methods, 2015, 7(20):8524-8533.VALIZADEH A, KHOSROUSHAHI A Y. Anal. Methods, 2015, 7(20):8524-8533.

    21. [21]

      LUAN Q, MACARANIAG C, ZHOU J, PAPAUTSKY I. Biomicrofluidics, 2020, 14(3):031502.LUAN Q, MACARANIAG C, ZHOU J, PAPAUTSKY I. Biomicrofluidics, 2020, 14(3):031502.

    22. [22]

      NARAYANAMURTHY V, NAGARAJAN S, FIRUS KHAN A Y, SAMSURI F, SRIDHAR T M. Anal. Methods, 2017, 9(25):3751-3772.NARAYANAMURTHY V, NAGARAJAN S, FIRUS KHAN A Y, SAMSURI F, SRIDHAR T M. Anal. Methods, 2017, 9(25):3751-3772.

    23. [23]

      FENG C, MAO D, LU C, ZHANG Q, LIU X, WU Q, GONG X, CHEN G, ZHU X. Anal. Chem., 2021, 93(2):1110-1119.FENG C, MAO D, LU C, ZHANG Q, LIU X, WU Q, GONG X, CHEN G, ZHU X. Anal. Chem., 2021, 93(2):1110-1119.

    24. [24]

      ANDERSSON M, JOHANSSON S, BERGMAN H, XIAO L, BEHRENDT L, TENJE M. Lab Chip, 2021, 21(9):1694-1705.ANDERSSON M, JOHANSSON S, BERGMAN H, XIAO L, BEHRENDT L, TENJE M. Lab Chip, 2021, 21(9):1694-1705.

    25. [25]

      LIU Z, HUANG Y, LIANG W, BAI J, FENG H, FANG Z, TIAN G, ZHU Y, ZHANG H, WANG Y, LIU A, CHEN Y. Lab Chip, 2021, 21(15):2881-2891.LIU Z, HUANG Y, LIANG W, BAI J, FENG H, FANG Z, TIAN G, ZHU Y, ZHANG H, WANG Y, LIU A, CHEN Y. Lab Chip, 2021, 21(15):2881-2891.

    26. [26]

      WANG K, ZHOU L, ZHAO S, CHENG Z, QIU S, LU Y, WU Z, WAHAB A H A A, MAO H, ZHAO J. Talanta, 2019, 200:169-176.WANG K, ZHOU L, ZHAO S, CHENG Z, QIU S, LU Y, WU Z, WAHAB A H A A, MAO H, ZHAO J. Talanta, 2019, 200:169-176.

    27. [27]

      TAYEBI M, O'RORKE R, WONG H C, LOW H Y, HAN J, COLLINS D J, AI Y. Small, 2020, 16(17):2000462.TAYEBI M, O'RORKE R, WONG H C, LOW H Y, HAN J, COLLINS D J, AI Y. Small, 2020, 16(17):2000462.

    28. [28]

      SZÉLES E, NAGY K, ÁBRAHÁM Á, KOVÁCS S, PODMANICZKI A, NAGY V, KOVÁCS L, GALAJDA P, TÓTH S Z. Cells, 2022, 11(2):285.SZÉLES E, NAGY K, ÁBRAHÁM Á, KOVÁCS S, PODMANICZKI A, NAGY V, KOVÁCS L, GALAJDA P, TÓTH S Z. Cells, 2022, 11(2):285.

    29. [29]

      KHAJVAND T, HUANG P, LI L, ZHANG M, ZHU F, XU X, HUANG M, YANG C, LU Y, ZHU Z. Lab Chip, 2021, 21(24):4823-4830.KHAJVAND T, HUANG P, LI L, ZHANG M, ZHU F, XU X, HUANG M, YANG C, LU Y, ZHU Z. Lab Chip, 2021, 21(24):4823-4830.

    30. [30]

      GRIGOREV G V, NIKITIN N O, HVATOV A, KALYUZHNAYA A V, LEBEDEV A V, WANG X, QIAN X, MAKSIMOV G V, LIN L. Micromachines, 2022, 13(3):367.GRIGOREV G V, NIKITIN N O, HVATOV A, KALYUZHNAYA A V, LEBEDEV A V, WANG X, QIAN X, MAKSIMOV G V, LIN L. Micromachines, 2022, 13(3):367.

    31. [31]

      CHEN Y, ZHOU Z, ZHU S, NI Z, XIANG N. Microchem. J., 2022, 177:107284.CHEN Y, ZHOU Z, ZHU S, NI Z, XIANG N. Microchem. J., 2022, 177:107284.

    32. [32]

      TANG H, NIU J, PAN X, JIN H, LIN S, CUI D. J. Chromatogr. A, 2022, 1679:463384.TANG H, NIU J, PAN X, JIN H, LIN S, CUI D. J. Chromatogr. A, 2022, 1679:463384.

    33. [33]

      GILLAMS R J, CALERO V, FERNANDEZ-MATEO R, MORGAN H. Lab Chip, 2022, 22(20):3869-3876.GILLAMS R J, CALERO V, FERNANDEZ-MATEO R, MORGAN H. Lab Chip, 2022, 22(20):3869-3876.

    34. [34]

      VARMAZYARI V, GHAFOORIFARD H, HABIBIYAN H, EBRAHIMI M, GHAFOURI-FARD S. J. Mol. Liquids, 2022, 349:118192.VARMAZYARI V, GHAFOORIFARD H, HABIBIYAN H, EBRAHIMI M, GHAFOURI-FARD S. J. Mol. Liquids, 2022, 349:118192.

    35. [35]

      AU S H, EDD J, STODDARD A E, WONG K H K, FACHIN F, MAHESWARAN S, HABER D A, STOTT S L, KAPUR R, TONER M. Sci. Rep., 2017, 7(1):2433.AU S H, EDD J, STODDARD A E, WONG K H K, FACHIN F, MAHESWARAN S, HABER D A, STOTT S L, KAPUR R, TONER M. Sci. Rep., 2017, 7(1):2433.

    36. [36]

      DAVIS J A. Microfluidic Separation of Blood Components through Deterministic Lateral Displacement. Princeton University, 2008.DAVIS J A. Microfluidic Separation of Blood Components through Deterministic Lateral Displacement. Princeton University, 2008.

    37. [37]

      AKBARNATAJ K, MALEKI S, REZAEIAN M, HAKI M, SHAMLOO A. Talanta, 2023, 254:124125.AKBARNATAJ K, MALEKI S, REZAEIAN M, HAKI M, SHAMLOO A. Talanta, 2023, 254:124125.

    38. [38]

      SHIRINY A, BAYAREH M. Chem. Eng. Sci., 2021, 229:116102.SHIRINY A, BAYAREH M. Chem. Eng. Sci., 2021, 229:116102.

    39. [39]

      AYASH A A. Chem. Eng. Sci., 2023, 265:118235.AYASH A A. Chem. Eng. Sci., 2023, 265:118235.

    40. [40]

      ASMOLOV E S. J. Fluid Mech., 1999, 381:63-87.ASMOLOV E S. J. Fluid Mech., 1999, 381:63-87.

    41. [41]

      MARTEL J M, TONER M. Annu. Rev. Biomed. Eng., 2014, 16(1):371-396.MARTEL J M, TONER M. Annu. Rev. Biomed. Eng., 2014, 16(1):371-396.

    42. [42]

      YAO X Y, LIU Y, CHU Z Y, JIN W Q. Chin. J. Chem. Eng., 2022, 49:1-20.YAO X Y, LIU Y, CHU Z Y, JIN W Q. Chin. J. Chem. Eng., 2022, 49:1-20.

    43. [43]

      LI H, LI J, ZHANG Z, GUO Z, ZHANG C, WANG Z, GUO Q, LI C, LI C, YAO J, ZHENG A, XU J, GAO Q, ZHANG W, ZHOU L. Microsyst. Nanoeng., 2022, 8(1):23.LI H, LI J, ZHANG Z, GUO Z, ZHANG C, WANG Z, GUO Q, LI C, LI C, YAO J, ZHENG A, XU J, GAO Q, ZHANG W, ZHOU L. Microsyst. Nanoeng., 2022, 8(1):23.

    44. [44]

      SUN N, LI X, WANG Z, LI Y, PEI R. Biosens. Bioelectron., 2018, 102:157-163.SUN N, LI X, WANG Z, LI Y, PEI R. Biosens. Bioelectron., 2018, 102:157-163.

    45. [45]

      JEN C P, HSIAO J H, MASLOV N A. Sensors, 2012, 12(1):347-358.JEN C P, HSIAO J H, MASLOV N A. Sensors, 2012, 12(1):347-358.

    46. [46]

      AI X, WU Y, LU W, ZHANG X, ZHAO L, TU P, WANG K W, JIANG Y. Adv. Sci., 2020, 7(11):2000111.AI X, WU Y, LU W, ZHANG X, ZHAO L, TU P, WANG K W, JIANG Y. Adv. Sci., 2020, 7(11):2000111.

    47. [47]

      LIN C H, HSIAO Y H, CHANG H C, YEH C F, HE C K, SALM E M, CHEN C, CHIU I M, HSU C H. Lab Chip, 2015, 15(14):2928-2938.LIN C H, HSIAO Y H, CHANG H C, YEH C F, HE C K, SALM E M, CHEN C, CHIU I M, HSU C H. Lab Chip, 2015, 15(14):2928-2938.

    48. [48]

      LIPP C, UNING K, COTTET J, MIGLIOZZI D, BERTSCH A, RENAUD P. Lab Chip, 2021, 21(19):3686-3694.LIPP C, UNING K, COTTET J, MIGLIOZZI D, BERTSCH A, RENAUD P. Lab Chip, 2021, 21(19):3686-3694.

    49. [49]

      WU Y, ZHAO L, CHANG Y, ZHAO L, GUO G, WANG X. Chin. Chem. Lett., 2021, 32(11):3446-3449.WU Y, ZHAO L, CHANG Y, ZHAO L, GUO G, WANG X. Chin. Chem. Lett., 2021, 32(11):3446-3449.

    50. [50]

      OSADA K, HOSOKAWA M, YOSHINO T, TANAKA T. Analyst, 2014, 139(2):425-430.OSADA K, HOSOKAWA M, YOSHINO T, TANAKA T. Analyst, 2014, 139(2):425-430.

    51. [51]

      WANG C, LIU W, WEI Q, REN L, TAN M, YU Y. Biomicrofluidics, 2018, 12(3):034103.WANG C, LIU W, WEI Q, REN L, TAN M, YU Y. Biomicrofluidics, 2018, 12(3):034103.

    52. [52]

      DI CARLO D, WU L Y, LEE L P. Lab Chip, 2006, 6(11):1445-1449.DI CARLO D, WU L Y, LEE L P. Lab Chip, 2006, 6(11):1445-1449.

    53. [53]

      CHEN Y, AUSTIN R H, STURM J C. Biomicrofluidics, 2017, 11(5):054107.CHEN Y, AUSTIN R H, STURM J C. Biomicrofluidics, 2017, 11(5):054107.

    54. [54]

      YESILKOY F, UENO R, DESBIOLLES B X E, GRISI M, SAKAI Y, KIM B J, BRUGGER J. Biomicrofluidics, 2016, 10(1):014120.YESILKOY F, UENO R, DESBIOLLES B X E, GRISI M, SAKAI Y, KIM B J, BRUGGER J. Biomicrofluidics, 2016, 10(1):014120.

    55. [55]

      CHEN H, SUN J, WOLVETANG E, COOPER-WHITE J. Lab Chip, 2015, 15(4):1072-1083.CHEN H, SUN J, WOLVETANG E, COOPER-WHITE J. Lab Chip, 2015, 15(4):1072-1083.

    56. [56]

      ZHU J, WANG Y, CHEN P, SU H, DU W, LIU B F. Sens. Actuators, B, 2019, 283:685-692.ZHU J, WANG Y, CHEN P, SU H, DU W, LIU B F. Sens. Actuators, B, 2019, 283:685-692.

    57. [57]

      GANGULY R, LEE B, KANG S, KIM Y S, JEONG S G, KIM J S, PARK S Y, YOHEI Y, LEE C S. Biotechnol. Bioprocess Eng., 2021, 26(2):179-187.GANGULY R, LEE B, KANG S, KIM Y S, JEONG S G, KIM J S, PARK S Y, YOHEI Y, LEE C S. Biotechnol. Bioprocess Eng., 2021, 26(2):179-187.

    58. [58]

      KOBEL S, VALERO A, LATT J, RENAUD P, LUTOLF M. Lab Chip, 2010, 10(7):857-863.KOBEL S, VALERO A, LATT J, RENAUD P, LUTOLF M. Lab Chip, 2010, 10(7):857-863.

    59. [59]

      SAUZADE M, BROUZES E. Lab Chip, 2017, 17(13):2186-2192.SAUZADE M, BROUZES E. Lab Chip, 2017, 17(13):2186-2192.

    60. [60]

      LI L, WANG H, HUANG L, MICHAEL S A, HUANG W, WU H. Anal. Chem., 2019, 91(24):15908-15914.LI L, WANG H, HUANG L, MICHAEL S A, HUANG W, WU H. Anal. Chem., 2019, 91(24):15908-15914.

    61. [61]

      SUN X, LI B, LI W, REN X, SU N, LI R, LI J, HUANG Q. Micromachines, 2022, 13(8):1272.SUN X, LI B, LI W, REN X, SU N, LI R, LI J, HUANG Q. Micromachines, 2022, 13(8):1272.

    62. [62]

      TANG X, LIU X, LI P, LIU F, KOJIMA M, HUANG Q, ARAI T. Anal. Chem., 2020, 92(17):11607-11616.TANG X, LIU X, LI P, LIU F, KOJIMA M, HUANG Q, ARAI T. Anal. Chem., 2020, 92(17):11607-11616.

    63. [63]

      HE C K, CHEN Y W, WANG S H, HSU C H. Lab Chip, 2019, 19(8):1370-1377.HE C K, CHEN Y W, WANG S H, HSU C H. Lab Chip, 2019, 19(8):1370-1377.

    64. [64]

      CHUNG K, RIVET C A, KEMP M L, LU H. Anal. Chem., 2011, 83(18):7044-7052.CHUNG K, RIVET C A, KEMP M L, LU H. Anal. Chem., 2011, 83(18):7044-7052.

    65. [65]

      LIU Y, REN D, LING X, LIANG W, LI J, YOU Z, YALIKUN Y, TANAKA Y. Sensors, 2018, 18(11):3672.LIU Y, REN D, LING X, LIANG W, LI J, YOU Z, YALIKUN Y, TANAKA Y. Sensors, 2018, 18(11):3672.

  • 加载中
计量
  • PDF下载量:  30
  • 文章访问数:  1481
  • HTML全文浏览量:  148
文章相关
  • 收稿日期:  2023-01-08
  • 修回日期:  2023-02-22
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章