基于表面钝化效应的增强型均相阴极光电化学分析

闫梦华 杨高霞 王光丽

引用本文: 闫梦华, 杨高霞, 王光丽. 基于表面钝化效应的增强型均相阴极光电化学分析[J]. 分析化学, 2023, 51(2): 276-286. doi: 10.19756/j.issn.0253-3820.221494 shu
Citation:  YAN Meng-Hua,  YANG Gao-Xia,  WANG Guang-Li. Enhanced and Homogeneous Cathodic Photoelectrochemical Analysis Based on Surface Passivation Effect[J]. Chinese Journal of Analytical Chemistry, 2023, 51(2): 276-286. doi: 10.19756/j.issn.0253-3820.221494 shu

基于表面钝化效应的增强型均相阴极光电化学分析

    通讯作者: 王光丽,E-mail:glwang@jiangnan.edu.cn
  • 基金项目:

    国家自然科学基金项目(No.22174054)资助。

摘要: 基于Cd2+对硒化铅量子点(PbSe QDs)光电流的增强作用,构建了新型的分离式均相光电化学(PEC)传感器,分别用于miRNA-21和癌胚抗原(CEA)的灵敏检测。此传感器利用含有T-Hg2+-T碱基错配的发夹结构DNA,其环部分别与miRNA-21或CEA适配体的互补链结合形成双链,借助DNA链置换反应进行信号放大,释放发夹结构中的Hg2+。Hg2+与CdS QDs进行阳离子交换释放Cd2+,Cd2+与固定在电极上的PbSe QDs发生阳离子交换反应,在PbSe QDs表面形成硒化镉(CdSe),消除了PbSe表面的电子-空穴复合中心,提高了电荷的分离效率,增强了光电流响应。本方法检测miRNA-21的线性范围为5.0×10-16~5.0×10-10 mol/L,检出限为6.8×10-17 mol/L(S/N=3);对CEA检测的线性范围为5.0×10-2~5.0×104 pg/mL,检出限为0.007 pg/mL(S/N=3)。此传感器具有良好的抗干扰性和选择性,可用于实际样品的检测。

English


    1. [1]

      XU Y T, YU S Y, ZHU Y C, FAN G C, HAN D M, QU P, ZHAO W W. TrAC, Trends Anal. Chem., 2019, 114:81-88.XU Y T, YU S Y, ZHU Y C, FAN G C, HAN D M, QU P, ZHAO W W. TrAC, Trends Anal. Chem., 2019, 114:81-88.

    2. [2]

      ZHAO L, CHEN Y, WU X, LI Z, DONG Y, WANG G L. Anal. Chem., 2021, 93(51):17119-17126.ZHAO L, CHEN Y, WU X, LI Z, DONG Y, WANG G L. Anal. Chem., 2021, 93(51):17119-17126.

    3. [3]

      DING X, PENG F, ZHOU J, GONG W, SLAVEN G, LOH K P, LIM C T, LEONG D T. Nat. Commun., 2019, 10:41.DING X, PENG F, ZHOU J, GONG W, SLAVEN G, LOH K P, LIM C T, LEONG D T. Nat. Commun., 2019, 10:41.

    4. [4]

      KING L A, PARKINSON B A. J. Phys. Chem. Lett., 2016, 7(14):2844-2848.KING L A, PARKINSON B A. J. Phys. Chem. Lett., 2016, 7(14):2844-2848.

    5. [5]

      WANG G L, XU J J, CHEN H Y. Nanoscale, 2010, 2(7):1112-1114.WANG G L, XU J J, CHEN H Y. Nanoscale, 2010, 2(7):1112-1114.

    6. [6]

      WEN G, YANG X, XI X. J. Electroanal. Chem., 2015, 757:192-197.WEN G, YANG X, XI X. J. Electroanal. Chem., 2015, 757:192-197.

    7. [7]

      QI L, YANG M, CHANG D, ZHAO W, ZHANG S, DU Y, LI Y. Angew. Chem. Int. Ed., 2021, 60(47):24823-24827.QI L, YANG M, CHANG D, ZHAO W, ZHANG S, DU Y, LI Y. Angew. Chem. Int. Ed., 2021, 60(47):24823-24827.

    8. [8]

      DU Y, DONG S. Anal. Chem., 2017, 89(1):189-215.DU Y, DONG S. Anal. Chem., 2017, 89(1):189-215.

    9. [9]

      DU Y, POTHUKUCHY A, GOLLIHAR J D, NOURANI A, LI B, ELLINGTON A D. Angew. Chem. Int. Ed., 2017, 56(4):992-996.DU Y, POTHUKUCHY A, GOLLIHAR J D, NOURANI A, LI B, ELLINGTON A D. Angew. Chem. Int. Ed., 2017, 56(4):992-996.

    10. [10]

      MARTINS C S M, LAGROW A P, PRIOR J A V. ACS Sens., 2022, 7(5):1269-1299.MARTINS C S M, LAGROW A P, PRIOR J A V. ACS Sens., 2022, 7(5):1269-1299.

    11. [11]

      CHOI Y E, KWAK J W, PARK J W. Sensors, 2010, 10(1):428-455.CHOI Y E, KWAK J W, PARK J W. Sensors, 2010, 10(1):428-455.

    12. [12]

      KABZA A M, YOUNG B E, SCZEPANSKI J T. J. Am. Chem. Soc., 2017, 139(49):17715-17718.KABZA A M, YOUNG B E, SCZEPANSKI J T. J. Am. Chem. Soc., 2017, 139(49):17715-17718.

    13. [13]

      LI F, ZHANG H, WANG Z, LI X, LI X F, LE X C. J. Am. Chem. Soc., 2013, 135(7):2443-2446.LI F, ZHANG H, WANG Z, LI X, LI X F, LE X C. J. Am. Chem. Soc., 2013, 135(7):2443-2446.

    14. [14]

      TONG H, ZHU Y J, YANG L X, LI L, ZHANG L. Angew. Chem. Int. Ed., 2006, 45(46):7739-7742.TONG H, ZHU Y J, YANG L X, LI L, ZHANG L. Angew. Chem. Int. Ed., 2006, 45(46):7739-7742.

    15. [15]

      CHEN Y, ROSENZWEIG Z. Anal. Chem., 2002, 74(19):5132-5138.CHEN Y, ROSENZWEIG Z. Anal. Chem., 2002, 74(19):5132-5138.

    16. [16]

      DE TRIZIO L, MANNA L. Chem. Rev., 2016, 116(18):10852-10887.DE TRIZIO L, MANNA L. Chem. Rev., 2016, 116(18):10852-10887.

    17. [17]

      GUARDIA P, KOROBCHEVSKAYA K, CASU A, GENOVESE A, MANNA L, COMIN A. ACS Nano, 2013, 7(2):1045-1053.GUARDIA P, KOROBCHEVSKAYA K, CASU A, GENOVESE A, MANNA L, COMIN A. ACS Nano, 2013, 7(2):1045-1053.

    18. [18]

      ZHANG Y, DAI Q, LI X, ZOU B, WANG Y, YU W W. J. Nanopart. Res., 2011, 13(9):3721-3729.ZHANG Y, DAI Q, LI X, ZOU B, WANG Y, YU W W. J. Nanopart. Res., 2011, 13(9):3721-3729.

    19. [19]

      ZAIATS G, YANOVER D, VAXENBURG R, TILCHIN J, SASHCHIUK A, LIFSHITZ E. Materials, 2014, 7(11):7243-7275.ZAIATS G, YANOVER D, VAXENBURG R, TILCHIN J, SASHCHIUK A, LIFSHITZ E. Materials, 2014, 7(11):7243-7275.

    20. [20]

      LIU X, ZHANG S Q, CHENG Z H, WEI X, YANG T, YU Y L, CHEN M L, WANG J H. Anal. Chem., 2018, 90(20):12116-12122.LIU X, ZHANG S Q, CHENG Z H, WEI X, YANG T, YU Y L, CHEN M L, WANG J H. Anal. Chem., 2018, 90(20):12116-12122.

    21. [21]

      LU S, WANG S, ZHAO J, SUN J, YANG X. Anal. Chem., 2017, 89(16):8429-8436.LU S, WANG S, ZHAO J, SUN J, YANG X. Anal. Chem., 2017, 89(16):8429-8436.

    22. [22]

      XIA Y, WANG L, LI J, CHEN X, LAN J, YAN A, LEI Y, YANG S, YANG H, CHEN J. Anal. Chem., 2018, 90(15):8969-8976.XIA Y, WANG L, LI J, CHEN X, LAN J, YAN A, LEI Y, YANG S, YANG H, CHEN J. Anal. Chem., 2018, 90(15):8969-8976.

    23. [23]

      HUANG C, LIU Y, SUN Y, WANG F, GE S, YU J. ACS Appl. Mater. Interfaces, 2021, 13(30):35389-35396.HUANG C, LIU Y, SUN Y, WANG F, GE S, YU J. ACS Appl. Mater. Interfaces, 2021, 13(30):35389-35396.

    24. [24]

      HUANG C, ZHANG L, ZHU Y, ZHANG Z, LIU Y, LIU C, GE S, YU J. Anal. Chem., 2022, 94(22):8075-8084.HUANG C, ZHANG L, ZHU Y, ZHANG Z, LIU Y, LIU C, GE S, YU J. Anal. Chem., 2022, 94(22):8075-8084.

    25. [25]

      SI M L, ZHU S, WU H, LU Z, WU F, MO Y Y. Oncogene, 2007, 26(19):2799-2803.SI M L, ZHU S, WU H, LU Z, WU F, MO Y Y. Oncogene, 2007, 26(19):2799-2803.

    26. [26]

      SELCUKLU S D, DONOGHUE M T A, SPILLANE C. Biochem. Soc. Trans., 2009, 37(4):918-925.SELCUKLU S D, DONOGHUE M T A, SPILLANE C. Biochem. Soc. Trans., 2009, 37(4):918-925.

    27. [27]

      LIN Z, LV S, ZHANG K, TANG D. J. Mater. Chem. B, 2017, 5(4):826-833.LIN Z, LV S, ZHANG K, TANG D. J. Mater. Chem. B, 2017, 5(4):826-833.

    28. [28]

      TANG Y, ZHANG B, WANG Y, ZHAO F, ZENG B. ACS Appl. Nano Mater., 2021, 4(7):7264-7271.TANG Y, ZHANG B, WANG Y, ZHAO F, ZENG B. ACS Appl. Nano Mater., 2021, 4(7):7264-7271.

    29. [29]

      ZHANG A, HUANG C, SHI H, GUO W, ZHANG X, XIANG H, JIA T, MIAO F, JIA N. Sens. Actuators, B, 2017, 238:24-31.ZHANG A, HUANG C, SHI H, GUO W, ZHANG X, XIANG H, JIA T, MIAO F, JIA N. Sens. Actuators, B, 2017, 238:24-31.

    30. [30]

      SU S, HAN X, LU Z, LIU W, ZHU D, CHAO J, FAN C, WANG L, SONG S, WENG L, WANG L. ACS Appl. Mater. Interfaces, 2017, 9(14):12773-12781.SU S, HAN X, LU Z, LIU W, ZHU D, CHAO J, FAN C, WANG L, SONG S, WENG L, WANG L. ACS Appl. Mater. Interfaces, 2017, 9(14):12773-12781.

    31. [31]

      QIU Z, SHU J, TANG D. Anal. Chem., 2018, 90(20):12214-12220.QIU Z, SHU J, TANG D. Anal. Chem., 2018, 90(20):12214-12220.

  • 加载中
计量
  • PDF下载量:  9
  • 文章访问数:  988
  • HTML全文浏览量:  97
文章相关
  • 收稿日期:  2022-10-06
  • 修回日期:  2022-12-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章