近红外光谱法无损检测平谷产大桃品质方法研究

陈玥瑶 夏静静 韦芸 徐惟馨 毛欣然 陈月飞 闵顺耕 熊艳梅

引用本文: 陈玥瑶, 夏静静, 韦芸, 徐惟馨, 毛欣然, 陈月飞, 闵顺耕, 熊艳梅. 近红外光谱法无损检测平谷产大桃品质方法研究[J]. 分析化学, 2023, 51(3): 454-462. doi: 10.19756/j.issn.0253-3820.221405 shu
Citation:  CHEN Yue-Yao,  XIA Jing-Jing,  WEI Yun,  XU Wei-Xin,  MAO Xin-Ran,  CHEN Yue-Fei,  MIN Shun-Geng,  XIONG Yan-Mei. 近红外光谱法无损检测平谷产大桃品质方法研究[J]. Chinese Journal of Analytical Chemistry, 2023, 51(3): 454-462. doi: 10.19756/j.issn.0253-3820.221405 shu

近红外光谱法无损检测平谷产大桃品质方法研究

    通讯作者: 闵顺耕,E-mail:minsg@cau.edu.cn; 熊艳梅,E-mail:xiongym@cau.edu.cn
  • 基金项目:

    国家自然科学基金项目(No.21023048)和智能化农业检测服务的研究和应用项目(No.2021110041000003)资助。

摘要: 利用近红外(Near infrared,NIR)漫反射光谱法结合化学计量学定量分析技术开展了平谷产大桃品质的无损检测研究。使用手持式近红外光谱仪采集7个不同品种平谷产大桃的近红外漫反射光谱,采用系统抽样法将其划分为验证集和验证集,结合Savitzky-Golay卷积平滑法(Savitzky-Golay Smoothing,S-G)、标准正态变换法(Standard normal variation,SNV)和多元散射校正法(Multivariate scattering correction,MSC)3种预处理方法以及偏最小二乘回归(Partial least square regression,PLSR)与随机森林(Random forest,RF)两种建模算法,分别建立了大桃中的糖度(Soluble solids content,SSC)、酸度、硬度和水分定量模型。结果表明,非线性RF模型优于线性PLSR模型,对于SSC,一阶导数光谱结合MSC预处理建立的RF模型效果最佳,验证集决定系数(Coefficient of determination,R2)和预测均方根误差(Root mean squared error prediction,RMSEP)分别为0.79和0.77° Brix;对于硬度,一阶导数光谱结合MSC预处理建立的RF模型效果最佳,验证集R2和RMSEP分别为0.90和0.55 N;对于酸度,一阶导数光谱结合MSC预处理建立的RF模型效果最佳,验证集R2和RMSEP分别为0.71和0.18;对于水分,一阶导数光谱结合MSC预处理建立的RF模型效果最佳,验证集R2和RMSEP分别为0.80和0.64%。本研究采用近红外光谱结合化学计量学算法建立的方法可实现平谷大桃品质的快速无损检测。

English


    1. [1]

      HUANG L, MENG L, ZHU N, WU D. Postharvest Biol. Technol., 2017, 133:104-112.HUANG L, MENG L, ZHU N, WU D. Postharvest Biol. Technol., 2017, 133:104-112.

    2. [2]

      GONÇALVES R G, COUTO J, ALMEIDA D P F. Sci. Hortic., 2016, 209:293-299.GONÇALVES R G, COUTO J, ALMEIDA D P F. Sci. Hortic., 2016, 209:293-299.

    3. [3]

      MINAS I S, TANOU G, MOLASSIOTIS A. Sci. Hortic., 2018, 235:307-322.MINAS I S, TANOU G, MOLASSIOTIS A. Sci. Hortic., 2018, 235:307-322.

    4. [4]

      ANTHONY B M, CHAPARRO J M, PRENNI J E, MINAS I S. Plant Physiol. Biochem., 2020, 157:416-431.ANTHONY B M, CHAPARRO J M, PRENNI J E, MINAS I S. Plant Physiol. Biochem., 2020, 157:416-431.

    5. [5]

      VIEGAS T R, MATA A L M L, DUARTE M M L, LIMA K M G. Food Chem., 2016, 190:1-4.VIEGAS T R, MATA A L M L, DUARTE M M L, LIMA K M G. Food Chem., 2016, 190:1-4.

    6. [6]

      NCAMA K, OPARA U L, TESFAY S Z, FAWOLE O A, MAGWAZA L S. J. Food Eng., 2017, 193:86-94.NCAMA K, OPARA U L, TESFAY S Z, FAWOLE O A, MAGWAZA L S. J. Food Eng., 2017, 193:86-94.

    7. [7]

      BOTH A J, BENJAMIN L, FRANKLIN J, HOLROYD G, INCOLL L D, LEFSRUD M G, PITKIN G. Plant Methods, 2015, 11(1):43-60.BOTH A J, BENJAMIN L, FRANKLIN J, HOLROYD G, INCOLL L D, LEFSRUD M G, PITKIN G. Plant Methods, 2015, 11(1):43-60.

    8. [8]

      GRASSI S, ALAMPRESE C. Curr. Opin. Food Sci., 2018, 22:17-21.GRASSI S, ALAMPRESE C. Curr. Opin. Food Sci., 2018, 22:17-21.

    9. [9]

      MINAS I S, BLANCO-CIPOLLONE F, STERLE D. Food Chem., 2021, 335:127626.MINAS I S, BLANCO-CIPOLLONE F, STERLE D. Food Chem., 2021, 335:127626.

    10. [10]

      UWADAIRA Y, SEKIYAMA Y, IKEHATA A. Heliyon, 2018, 4(2):e00531.UWADAIRA Y, SEKIYAMA Y, IKEHATA A. Heliyon, 2018, 4(2):e00531.

    11. [11]

      WANG J, WANG J, CHEN Z, HAN D. Postharvest Biol. Technol., 2017, 129:143-151.WANG J, WANG J, CHEN Z, HAN D. Postharvest Biol. Technol., 2017, 129:143-151.

    12. [12]

      YU X, LU H, WU D. Postharvest Biol. Technol., 2018, 141:39-49.YU X, LU H, WU D. Postharvest Biol. Technol., 2018, 141:39-49.

    13. [13]

      CORTÉS V, ORTIZ C, ALEIXOS N, BLASCO J, CUBERO S, TALENS P. Postharvest Biol. Technol., 2016, 118:148-158.CORTÉS V, ORTIZ C, ALEIXOS N, BLASCO J, CUBERO S, TALENS P. Postharvest Biol. Technol., 2016, 118:148-158.

    14. [14]

      MOHD ALI M, HASHIM N, BEJO S K, SHAMSUDIN R. Sci. Hortic., 2017, 225:689-699.MOHD ALI M, HASHIM N, BEJO S K, SHAMSUDIN R. Sci. Hortic., 2017, 225:689-699.

    15. [15]

      LI B, COBO-MEDINA M, LECOURT J, HARRISON N, HARRISON R J, CROSS J V. Postharvest Biol. Technol., 2018, 141:8-15.LI B, COBO-MEDINA M, LECOURT J, HARRISON N, HARRISON R J, CROSS J V. Postharvest Biol. Technol., 2018, 141:8-15.

    16. [16]

      ESCRIBANO S, BIASI W V, LERUD R, SLAUGHTER D C, MITCHAM E J. Postharvest Biol. Technol., 2017, 128:112-120.ESCRIBANO S, BIASI W V, LERUD R, SLAUGHTER D C, MITCHAM E J. Postharvest Biol. Technol., 2017, 128:112-120.

    17. [17]

      NY/T 2009-2011. Determination of Fruit Firmness. Agricultural Industry Standard of the People's Republic of China. 水果硬度的测定. 中华人民共和国农业行业标准. NY/T 2009-2011.

    18. [18]

      NY/T 2637-2014. Refractometric Method for Determination of Total Soluble Solids in Fruits and Vegetables. Agricultural Industry Standard of the People's Republic of China. 水果和蔬菜可溶性固形物含量的测定. 中华人民共和国农业行业标准. NY/T 2637-2014.

    19. [19]

      GB10468-1989. Determination of pH Value of Fruit and Vegetable Products. National Standards of the People's Republic of China. 水果和蔬菜产品pH值的测定方法. 中华人民共和国国家标准. GB10468-1989.

    20. [20]

      GB5009.3-2016. Determination of Moisture in Foods. National Standards of the People's Republic of China. 食品中水分的测定. 中华人民共和国国家标准. GB5009.3-2016.

    21. [21]

      LOUW E D, THERON K I. Postharvest Biol. Technol., 2010, 58(3):176-184.LOUW E D, THERON K I. Postharvest Biol. Technol., 2010, 58(3):176-184.

    22. [22]

      BREIMAN L. Machine Learn., 2001, 45(1):5-32.BREIMAN L. Machine Learn., 2001, 45(1):5-32.

    23. [23]

      WEI K, WANG Q, TENG G, XU X, ZHAO Z, CHEN G. Appl. Sci., 2022, 12(10):4981.WEI K, WANG Q, TENG G, XU X, ZHAO Z, CHEN G. Appl. Sci., 2022, 12(10):4981.

    24. [24]

      FENG T, ZHANG X, LI M, CHEN T, JIAO L, XU Y, TANG H, ZHANG T, LI H. Anal. Methods, 2021, 13(30):3424-3432.FENG T, ZHANG X, LI M, CHEN T, JIAO L, XU Y, TANG H, ZHANG T, LI H. Anal. Methods, 2021, 13(30):3424-3432.

    25. [25]

      WENG S, QIU M, DONG R, WANG F, HUANG L, ZHANG D, ZHAO J. Spectrochim. Acta, Part A, 2018, 200:20-25.WENG S, QIU M, DONG R, WANG F, HUANG L, ZHANG D, ZHAO J. Spectrochim. Acta, Part A, 2018, 200:20-25.

    26. [26]

      LI M, XU Y, MEN J, YAN C, LI H. Spectrochim. Acta, Part A, 2021, 251:119430.LI M, XU Y, MEN J, YAN C, LI H. Spectrochim. Acta, Part A, 2021, 251:119430.

    27. [27]

      INOBEME A, NAYAK V, MATHEW T J, OKONKWO S, EKWOBA L, AJAI A I, BERNARD E, INOBEME J, MARIAM AGBUGUI M, SINGH K R. J. Environ. Manage., 2022, 309:114653.INOBEME A, NAYAK V, MATHEW T J, OKONKWO S, EKWOBA L, AJAI A I, BERNARD E, INOBEME J, MARIAM AGBUGUI M, SINGH K R. J. Environ. Manage., 2022, 309:114653.

  • 加载中
计量
  • PDF下载量:  21
  • 文章访问数:  897
  • HTML全文浏览量:  78
文章相关
  • 收稿日期:  2022-08-06
  • 修回日期:  2023-01-13
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章