微波辅助法合成硼、氮掺杂碳点用于检测抗坏血酸

李佳昕 刘梦婷 卢朝粉 徐娅娟 曹秋娥 周川华

引用本文: 李佳昕, 刘梦婷, 卢朝粉, 徐娅娟, 曹秋娥, 周川华. 微波辅助法合成硼、氮掺杂碳点用于检测抗坏血酸[J]. 分析化学, 2023, 51(2): 211-218. doi: 10.19756/j.issn.0253-3820.221314 shu
Citation:  LI Jia-Xin,  LIU Meng-Ting,  LU Chao-Fen,  XU Ya-Juan,  CAO Qiu-E,  ZHOU Chuan-Hua. Microwave-assisted Synthesis of Boron and Nitrogen-doped Carbon Dots for Detection of Ascorbic Acid[J]. Chinese Journal of Analytical Chemistry, 2023, 51(2): 211-218. doi: 10.19756/j.issn.0253-3820.221314 shu

微波辅助法合成硼、氮掺杂碳点用于检测抗坏血酸

    通讯作者: 周川华,E-mail:chzhou@ynu.edu.cn
  • 基金项目:

    云南省万人计划青年拔尖人才项目资助。

摘要: 以乙二胺为碳源和氮源,4-羟基苯硼酸为硼掺杂剂,采用微波辅助法一步合成了硼、氮掺杂碳点(B,N-CDs)。通过透射电子显微镜、紫外-可见吸收光谱、荧光光谱、X射线光电子能谱对其形貌、光学性质等进行表征。B,N-CDs的最大激发和发射波长分别为400和510 nm。以硫酸奎宁为参照,B,N-CDs的相对量子产率为9.94%。Fe3+的存在可使此CDs的荧光猝灭,而抗坏血酸(AA)可通过将Fe3+还原为Fe2+,使B,N-CDs的荧光恢复,基于此,建立了一种检测AA的荧光分析方法。本方法对AA具有良好的选择性,在1.0~80.0 μmol/L浓度范围内,B,N-CDs的荧光恢复程度与AA的浓度呈良好的线性关系,检出限为0.49 μmol/L(S/N=3)。将此方法应用于果汁中AA的测定,结果较好。

English


    1. [1]

      WANG C, HALAWA M I, LOU B, GAO W, LI J, XU G. Analyst, 2021, 146(6):1981-1985.WANG C, HALAWA M I, LOU B, GAO W, LI J, XU G. Analyst, 2021, 146(6):1981-1985.

    2. [2]

      JIANG Y, XIAO X, LI C, LUO Y, CHEN S, SHI G, HAN K, GU H. Anal. Chem., 2020, 92(5):3981-3989.JIANG Y, XIAO X, LI C, LUO Y, CHEN S, SHI G, HAN K, GU H. Anal. Chem., 2020, 92(5):3981-3989.

    3. [3]

      DONG H, ZHOU Y, ZHAO L, HAO Y, ZHANG Y, YE B, XU M. Anal. Chem., 2020, 92(22):15079-15086.DONG H, ZHOU Y, ZHAO L, HAO Y, ZHANG Y, YE B, XU M. Anal. Chem., 2020, 92(22):15079-15086.

    4. [4]

      CAO Cheng-Cheng, LIN Xiang-Fang, REN Chen-Yu, SU Lei. Chin. J. Anal. Chem., 2022, 50(6):932-939. 曹程程, 林祥芳, 任晨宇, 苏磊. 分析化学, 2022, 50(6):932-939.

    5. [5]

      LI X, ZHOU C H, ZI Q, CAO Q E. J. Electroanal. Chem., 2016, 780:321-326.LI X, ZHOU C H, ZI Q, CAO Q E. J. Electroanal. Chem., 2016, 780:321-326.

    6. [6]

      RAOOF J B, KIANI A, OJANI R, VALIOLLAHI R, RASHID-NADIMI S. J. Solid State Electrochem., 2010, 14(7):1171-1176.RAOOF J B, KIANI A, OJANI R, VALIOLLAHI R, RASHID-NADIMI S. J. Solid State Electrochem., 2010, 14(7):1171-1176.

    7. [7]

      LI H, ZHOU Y, DU J. J. Photochem. Photobiol. A, 2022, 429:113945.LI H, ZHOU Y, DU J. J. Photochem. Photobiol. A, 2022, 429:113945.

    8. [8]

      ABE C, HIGUCHI O, MATSUMOTO A, MIYAZAWA T. Analyst, 2022, 147(12):2640-2643.ABE C, HIGUCHI O, MATSUMOTO A, MIYAZAWA T. Analyst, 2022, 147(12):2640-2643.

    9. [9]

      YANG X, ZHANG M, ZHANG Y, WANG N, BIAN W, CHOI M M F. Anal. Methods, 2019, 11(45):5803-5809.YANG X, ZHANG M, ZHANG Y, WANG N, BIAN W, CHOI M M F. Anal. Methods, 2019, 11(45):5803-5809.

    10. [10]

      SU D, HAN X, YAN X, JIN R, LI H, KONG D, GAO H, LIU F, SUN P, LU G. Anal. Chem., 2020, 92(18):12716-12724.SU D, HAN X, YAN X, JIN R, LI H, KONG D, GAO H, LIU F, SUN P, LU G. Anal. Chem., 2020, 92(18):12716-12724.

    11. [11]

      HAN Z, NAN D, YANG H, SUN Q, PAN S, LIU H, HU X. Sens. Actuators, B, 2019, 298:126842.HAN Z, NAN D, YANG H, SUN Q, PAN S, LIU H, HU X. Sens. Actuators, B, 2019, 298:126842.

    12. [12]

      SHU Y, LU J, MAO Q X, SONG R S, WANG X Y, CHEN X W, WANG J H. Carbon, 2017, 114:324-333.SHU Y, LU J, MAO Q X, SONG R S, WANG X Y, CHEN X W, WANG J H. Carbon, 2017, 114:324-333.

    13. [13]

      KRISHNA A S, RADHAKUMARY C, ANTONY M, SREENIVASAN K. J. Mater. Chem. B, 2014, 2(48):8626-8632.KRISHNA A S, RADHAKUMARY C, ANTONY M, SREENIVASAN K. J. Mater. Chem. B, 2014, 2(48):8626-8632.

    14. [14]

      WEN X, SHI L, WEN G, LI Y, DONG C, YANG J, SHUANG S. Sens. Actuators, B, 2016, 235:179-187.WEN X, SHI L, WEN G, LI Y, DONG C, YANG J, SHUANG S. Sens. Actuators, B, 2016, 235:179-187.

    15. [15]

      CHEN Li-Juan, LIU Ren-Yong, ZHAO Dan, YAN Ye-Han. Chin. J. Anal. Chem., 2020, 48(8):1076-1074. 陈丽娟, 刘仁勇, 赵丹, 闫叶寒. 分析化学, 2020, 48(8):1067-1074.

    16. [16]

      MIAO S, LIANG K, ZHU J, YANG B, ZHAO D, KONG B. Nano Today, 2020, 33:100879.MIAO S, LIANG K, ZHU J, YANG B, ZHAO D, KONG B. Nano Today, 2020, 33:100879.

    17. [17]

      LUO X, ZHANG W, HAN Y, CHEN X, ZHU L, TANG W, WANG J, YUE T, LI Z. Food Chem., 2018, 258:214-221.LUO X, ZHANG W, HAN Y, CHEN X, ZHU L, TANG W, WANG J, YUE T, LI Z. Food Chem., 2018, 258:214-221.

    18. [18]

      YUAN Y H, LIU Z X, LI R S, ZOU H Y, LIN M, LIU H, HUANG C Z. Nanoscale, 2016, 8(12):6770-6776.YUAN Y H, LIU Z X, LI R S, ZOU H Y, LIN M, LIU H, HUANG C Z. Nanoscale, 2016, 8(12):6770-6776.

    19. [19]

      SHAN X, CHAI L, MA J, QIAN Z, CHEN J, FENG H. Analyst, 2014, 139(10):2322-2325.SHAN X, CHAI L, MA J, QIAN Z, CHEN J, FENG H. Analyst, 2014, 139(10):2322-2325.

    20. [20]

      LI F, YANG D, XU H. Chem. Eur. J., 2019, 25(5):1165-1176.LI F, YANG D, XU H. Chem. Eur. J., 2019, 25(5):1165-1176.

    21. [21]

      SINGH V K, SINGH V, YADAV P K, CHANDRA S, BANO D, KUMAR V, KOCH B, TALAT M, HASAN S H. New J. Chem., 2018, 42(15):12990-12997.SINGH V K, SINGH V, YADAV P K, CHANDRA S, BANO D, KUMAR V, KOCH B, TALAT M, HASAN S H. New J. Chem., 2018, 42(15):12990-12997.

    22. [22]

      DE MEDEIROS T V, MANIOUDAKIS J, NOUN F, MACAIRAN J R, VICTORIA F, NACCACHE R. J. Mater. Chem. C, 2019, 7(24):7175-7195.DE MEDEIROS T V, MANIOUDAKIS J, NOUN F, MACAIRAN J R, VICTORIA F, NACCACHE R. J. Mater. Chem. C, 2019, 7(24):7175-7195.

    23. [23]

      LI H, XU Y, DING J, ZHAO L, ZHOU T, DING H, CHEN Y, DING L. Microchim. Acta, 2018, 185(2):104.LI H, XU Y, DING J, ZHAO L, ZHOU T, DING H, CHEN Y, DING L. Microchim. Acta, 2018, 185(2):104.

    24. [24]

      WANG X, QU K, XU B, REN J, QU X. J. Mater. Chem., 2011, 21(8):2445-2450.WANG X, QU K, XU B, REN J, QU X. J. Mater. Chem., 2011, 21(8):2445-2450.

    25. [25]

      XIAO Q, LIANG Y, ZHU F, LU S, HUANG S. Microchim. Acta, 2017, 184(7):2429-2438.XIAO Q, LIANG Y, ZHU F, LU S, HUANG S. Microchim. Acta, 2017, 184(7):2429-2438.

    26. [26]

      PEI Y, SONG H, LIU Y, CHENG Y, LI W, CHEN Y, FAN Y, LIU B, LU S. J. Colloid Interface Sci., 2021, 600:865-871.PEI Y, SONG H, LIU Y, CHENG Y, LI W, CHEN Y, FAN Y, LIU B, LU S. J. Colloid Interface Sci., 2021, 600:865-871.

    27. [27]

      CHANG Y, YUAN C, LI Y, LIU C, WU T, ZENG B, XU Y, DAI L. J. Mater. Chem. A, 2017, 5(4):1672-1678.CHANG Y, YUAN C, LI Y, LIU C, WU T, ZENG B, XU Y, DAI L. J. Mater. Chem. A, 2017, 5(4):1672-1678.

    28. [28]

      LIU H, LIU Z, ZHANG J, ZHI L, WU M. New Carbon Mater., 2021, 36(3):585-593.LIU H, LIU Z, ZHANG J, ZHI L, WU M. New Carbon Mater., 2021, 36(3):585-593.

    29. [29]

      YAN F, SHI D, ZHENG T, YUN K, ZHOU X, CHEN L. Sens. Actuators, B, 2016, 224:926-935.YAN F, SHI D, ZHENG T, YUN K, ZHOU X, CHEN L. Sens. Actuators, B, 2016, 224:926-935.

    30. [30]

      MA F, LUO J, LI X, LIU S, YANG M, CHEN X. Spectrochim. Acta, Part A, 2021, 249:119343.MA F, LUO J, LI X, LIU S, YANG M, CHEN X. Spectrochim. Acta, Part A, 2021, 249:119343.

    31. [31]

      JEROME R, SUNDRAMOORTHY A K. J. Electrochem. Soc., 2019, 166(9):B3017-B3024.JEROME R, SUNDRAMOORTHY A K. J. Electrochem. Soc., 2019, 166(9):B3017-B3024.

    32. [32]

      WANG T, LUO H, JING X, YANG J, HUO M, WANG Y. Molecules, 2021, 26(5):1246.WANG T, LUO H, JING X, YANG J, HUO M, WANG Y. Molecules, 2021, 26(5):1246.

    33. [33]

      DARABDHARA G, SHARMA B, DAS M R, BOUKHERROUB R, SZUNERITS S. Sens. Actuators, B, 2017, 238:842-851.DARABDHARA G, SHARMA B, DAS M R, BOUKHERROUB R, SZUNERITS S. Sens. Actuators, B, 2017, 238:842-851.

    34. [34]

      LU Chao-Fen, ZHANG Ju-Mei, QIN Yu, ZHENG Li-Yan, CAO Qiu-E, ZHOU Chuan-Hua. Chin. J. Anal. Chem., 2020, 48(8):997-1003. 卢朝粉, 张菊梅, 秦渝, 郑立炎, 曹秋娥, 周川华. 分析化学. 2020, 48(8):997-1003.

  • 加载中
计量
  • PDF下载量:  10
  • 文章访问数:  779
  • HTML全文浏览量:  107
文章相关
  • 收稿日期:  2022-06-27
  • 修回日期:  2022-08-14
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章