生物矿化法合成乳铁蛋白硫化铜纳米粒子及其光热抗肿瘤性能研究

范博 刘岚 吴倩 郑子良 邢洋 张娟 张瑞平

引用本文: 范博, 刘岚, 吴倩, 郑子良, 邢洋, 张娟, 张瑞平. 生物矿化法合成乳铁蛋白硫化铜纳米粒子及其光热抗肿瘤性能研究[J]. 分析化学, 2023, 51(2): 239-249. doi: 10.19756/j.issn.0253-3820.221293 shu
Citation:  FAN Bo,  LIU Lan,  WU Qian,  ZHENG Zi-Liang,  XING Yang,  ZHANG Juan,  ZHANG Rui-Ping. Biomineralization-inspired Synthesis of Lactoferrin-mediated Copper Sulfide Nanoparticle and Its Photothermal Ablation for Tumor Therapy[J]. Chinese Journal of Analytical Chemistry, 2023, 51(2): 239-249. doi: 10.19756/j.issn.0253-3820.221293 shu

生物矿化法合成乳铁蛋白硫化铜纳米粒子及其光热抗肿瘤性能研究

    通讯作者: 张瑞平,E-mail:zrp_7142@sxmu.edu.cn
  • 基金项目:

    国家自然科学基金项目(Nos.82211001138,82071987,81771907)、山西省青年科学研究项目(No.20210302124703)和山西医科大学博士启动基金项目(No.03201620)资助。

摘要: 基于近红外光二区(NIR-Ⅱ)的肿瘤光热治疗具有生物组织穿透更深、组织散射或吸收更少、皮肤最大允许暴露光照功率更高等优点。本研究采用生物矿化法一步合成了结构简单、生物相容性高、稳定性好且具有肿瘤靶向作用的乳铁蛋白硫化铜纳米粒子(Lactoferrin-mediated copper sulfide nanoparticles,CuS@Lf NPs)。此纳米粒子在NIR-II窗口具有光吸收,可在1064 nm激光照射下实现肿瘤光热治疗。乳铁蛋白不仅改善了硫化铜纳米粒子的溶解性,提高了其生物相容性和肿瘤靶向性,而且利用Lf的抗氧化作用可清除光热治疗后的氧化损伤。采用紫外-可见-近红外吸收光谱考察了CuS@Lf NPs的光吸收性质,结果表明,其在NIR-Ⅱ区1000~1300 nm范围内具有较强吸收,在1064 nm激光照射下实现了有效的光热转换,光热转化效率为25.84%,光热稳定性好。以LRP-1高表达的U87神经胶质瘤为模型,研究了CuS@Lf NPs的体内外抗肿瘤作用,结果表明,CuS@Lf NPs具有优良的体内光热性能,在NIR-Ⅱ区1064 nm激光照射下可有效实现肿瘤的热消融,安全性好,为实现NIR-Ⅱ光热抗肿瘤治疗在临床中的应用奠定了基础。

English


    1. [1]

      CAO Y, WU T, ZHANG K, MENG X, DAI W, WANG D, DONG H, ZHANG X. ACS Nano, 2019, 13(2):1499-1510.CAO Y, WU T, ZHANG K, MENG X, DAI W, WANG D, DONG H, ZHANG X. ACS Nano, 2019, 13(2):1499-1510.

    2. [2]

      WANG F, ZHU J, WANG Y, LI J. Nanomaterials, 2022, 12(10):1656.WANG F, ZHU J, WANG Y, LI J. Nanomaterials, 2022, 12(10):1656.

    3. [3]

      CAI H, DAI X, GUO X, ZHANG L, CAO K, YAN F, JI B, LIU Y. Acta Biomater., 2021, 127:276-286.CAI H, DAI X, GUO X, ZHANG L, CAO K, YAN F, JI B, LIU Y. Acta Biomater., 2021, 127:276-286.

    4. [4]

      ZHOU T, XIE S, ZHOU C, CHEN Y, LI H, LIU P, JIANG R, HANG L, JIANG G. ACS Appl. Bio Mater., 2022, 5(8):3841-3849.ZHOU T, XIE S, ZHOU C, CHEN Y, LI H, LIU P, JIANG R, HANG L, JIANG G. ACS Appl. Bio Mater., 2022, 5(8):3841-3849.

    5. [5]

      JIANG A, LIU Y, MA L, MAO F, LIU L, ZHAI X, ZHOU J. ACS Appl. Mater. Interfaces, 2019, 11(7):6820-6828.JIANG A, LIU Y, MA L, MAO F, LIU L, ZHAI X, ZHOU J. ACS Appl. Mater. Interfaces, 2019, 11(7):6820-6828.

    6. [6]

      LIU X, SU Q, SONG H, SHI X, ZHANG Y, ZHANG C, HUANG P, DONG A, KONG D, WANG W. Biomaterials, 2021, 275:120921.LIU X, SU Q, SONG H, SHI X, ZHANG Y, ZHANG C, HUANG P, DONG A, KONG D, WANG W. Biomaterials, 2021, 275:120921.

    7. [7]

      XIE X, GAO W, HAO J, WU J, CAI X, ZHENG Y. J. Nanobiotechnol., 2021, 19(1):126.XIE X, GAO W, HAO J, WU J, CAI X, ZHENG Y. J. Nanobiotechnol., 2021, 19(1):126.

    8. [8]

      ROSA L, CUTONE A, LEPANTO M, PAESANO R, VALENTI P. Int. J. Mol. Sci., 2017, 18(9):1985.ROSA L, CUTONE A, LEPANTO M, PAESANO R, VALENTI P. Int. J. Mol. Sci., 2017, 18(9):1985.

    9. [9]

      YE Qiu-Rong, MA Jian. Chem. Life, 2013, 33(3):269-274. 叶秋容, 马健. 生命的化学, 2013, 33(3):269-274.

    10. [10]

      KANWAR J, ROY K, PATEL Y, ZHOU S F, SINGH M, SINGH D, NASIR M, SEHGAL R, SEHGAL A, SINGH R, GARG S, KANWAR R. Molecules, 2015, 20(6):9703-9731.KANWAR J, ROY K, PATEL Y, ZHOU S F, SINGH M, SINGH D, NASIR M, SEHGAL R, SEHGAL A, SINGH R, GARG S, KANWAR R. Molecules, 2015, 20(6):9703-9731.

    11. [11]

      KIM S E, CHOI S, HONG J Y, SHIM K S, KIM T H, PARK K, LEE S H. Nanomaterials, 2019, 10(1):50.KIM S E, CHOI S, HONG J Y, SHIM K S, KIM T H, PARK K, LEE S H. Nanomaterials, 2019, 10(1):50.

    12. [12]

      ELZOGHBY A O, ABDELMONEEM M A, HASSANIN I A, ABD ELWAKIL M M, ELNAGGAR M A, MOKHTAR S, FANG J Y, ELKHODAIRY K A. Biomaterials, 2020, 263:120355.ELZOGHBY A O, ABDELMONEEM M A, HASSANIN I A, ABD ELWAKIL M M, ELNAGGAR M A, MOKHTAR S, FANG J Y, ELKHODAIRY K A. Biomaterials, 2020, 263:120355.

    13. [13]

      CHEN Q, ZHENG Z, HE X, RONG S, QIN Y, PENG X, ZHANG R. J. Mater. Chem. B, 2020, 8(41):9492-9501.CHEN Q, ZHENG Z, HE X, RONG S, QIN Y, PENG X, ZHANG R. J. Mater. Chem. B, 2020, 8(41):9492-9501.

    14. [14]

      CHEN Chao, WANG Xiang-Er, QIU Yun, HUANG Hao, WANG Yu-Fei, XIA Dong-Lin, GU Hai-Ying. Chin. J. Biomed. Eng., 2021, 40(2):210-217. 陈超, 王乡儿, 仇昀, 黄好, 王雨飞, 夏栋林, 顾海鹰. 中国生物医学工程学报, 2021, 40(2):210-217.

    15. [15]

      WANG Z, HUANG P, JACOBSON O, WANG Z, LIU Y, LIN L, LIN J, LU N, ZHANG H, TIAN R, NIU G, LIU G, CHEN X. ACS Nano, 2016, 10(3):3453-3460.WANG Z, HUANG P, JACOBSON O, WANG Z, LIU Y, LIN L, LIN J, LU N, ZHANG H, TIAN R, NIU G, LIU G, CHEN X. ACS Nano, 2016, 10(3):3453-3460.

    16. [16]

      HE Ruo-Xi, WANG Qi, LI Bei, JIA Jing, LU Wen-Jing, SHUANG Shao-Min. Chin. J. Anal. Chem., 2020, 48(2):197-205. 何若曦, 王琦, 李贝, 贾晶, 路雯婧, 双少敏. 分析化学, 2020, 48(2):197-205.

    17. [17]

      GAO D, SHENG Z, LIU Y, HU D, ZHANG J, ZHANG X, ZHENG H, YUAN Z. Adv. Healthcare Mater., 2017, 6(1):1601094.GAO D, SHENG Z, LIU Y, HU D, ZHANG J, ZHANG X, ZHENG H, YUAN Z. Adv. Healthcare Mater., 2017, 6(1):1601094.

    18. [18]

      CHEN J L, ZHANG H, HUANG X Q, WAN H Y, LI J, FAN X X, LUO K Q, WANG J, ZHU X M, WANG J. Nano-Micro Lett., 2019, 11(1):93.CHEN J L, ZHANG H, HUANG X Q, WAN H Y, LI J, FAN X X, LUO K Q, WANG J, ZHU X M, WANG J. Nano-Micro Lett., 2019, 11(1):93.

    19. [19]

      DING X, LIOW C H, ZHANG M, HUANG R, LI C, SHEN H, LIU M, ZOU Y, GAO N, ZHANG Z, LI Y, WANG Q, LI S, JIANG J. J. Am. Chem. Soc., 2014, 136(44):15684-15693.DING X, LIOW C H, ZHANG M, HUANG R, LI C, SHEN H, LIU M, ZOU Y, GAO N, ZHANG Z, LI Y, WANG Q, LI S, JIANG J. J. Am. Chem. Soc., 2014, 136(44):15684-15693.

    20. [20]

      LI Ting, WANG Cai-Yun, YAN Xu-Dong, YUN Zhan-You. Food Sci., 2012, 33(21):111-113. 李婷, 王彩云, 闫序东, 云战友. 食品科学, 2012, 33(21):111-113.

  • 加载中
计量
  • PDF下载量:  15
  • 文章访问数:  1259
  • HTML全文浏览量:  128
文章相关
  • 收稿日期:  2022-06-04
  • 修回日期:  2022-10-14
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章