顶空固相微萃取-电热解塞曼原子吸收光谱法测定水中总汞

赵健 张林楠 雷永乾 潘佳钏 郭鹏然

引用本文: 赵健, 张林楠, 雷永乾, 潘佳钏, 郭鹏然. 顶空固相微萃取-电热解塞曼原子吸收光谱法测定水中总汞[J]. 分析化学, 2021, 49(8): 1393-1401. doi: 10.19756/j.issn.0253-3820.211133 shu
Citation:  ZHAO Jian,  ZHANG Lin-Nan,  LEI Yong-Qian,  PAN Jia-Chuan,  GUO Peng-Ran. Determination of Trace Total Mercury in Water by Headspace Solid Phase Microextraction and Electropyrolytic Zeeman Atomic Absorption Spectrometry[J]. Chinese Journal of Analytical Chemistry, 2021, 49(8): 1393-1401. doi: 10.19756/j.issn.0253-3820.211133 shu

顶空固相微萃取-电热解塞曼原子吸收光谱法测定水中总汞

    通讯作者: 郭鹏然,E-mail:prguo@fenxi.com.cn
  • 基金项目:

    国家自然科学基金项目(No.21777150)、广东省重点领域研究计划项目(No.2020B1111350002)和广州市科技计划项目(No.201803030042)资助。

摘要: 采用负载金的木牙签制备顶空固相微萃取探针,建立了一种便携式,可萃取、富集和检测水体中痕量总汞的方法。采用扫描电子显微镜及能谱分析(SEM-EDS)对负载金萃取探针表面的形貌及元素组成进行了表征。考察了溶液的pH值、盐度、溶解性有机物(DOM)浓度及共存金属离子对SnCl2还原不同形态汞(无机汞、甲基汞和乙基汞)的影响。结果表明,pH值、盐度和溶解性有机物浓度对SnCl2还原不同形态汞的影响很小。除Cu2+外,低浓度金属离子(≤1 mg/L)对SnCl2还原不同形态汞的影响较小;高浓度(100 mg/L)的Fe3+、Zn2+、Ni2+、As3+、Cr3+、Cu2+、V5+和Pb2+等金属离子对SnCl2还原有机汞存在不同程度的抑制,V5+和Pb2+的抑制尤其显著。SnCl2对溶液中无机汞、甲基汞和乙基汞均具有良好的还原能力,多次还原相对标准偏差(RSD,n=10)分别为3.0%、3.7%和3.5%,表明SnCl2还原溶液中各形态汞的稳定性较好。本方法对水中总汞的检出限(LOD)为0.03 μg/L,RSD<6.1%(n=6),加标回收率在82.0%~90.0%之间。本方法操作简单、耗时短、稳定性好,适用于地表水和自来水中痕量总汞的检测。

English


    1. [1]

      PEREZ P A, HINTELMANN H, LOBOS G, BRAVO M A. Chemosphere, 2019, 237: 124535.PEREZ P A, HINTELMANN H, LOBOS G, BRAVO M A. Chemosphere, 2019, 237: 124535.

    2. [2]

      YANG J Y, JIA X D, WANG X Y, CHEN M L, YANG T, WANG J H. Analyst, 2020, 145(15): 5200-5205.YANG J Y, JIA X D, WANG X Y, CHEN M L, YANG T, WANG J H. Analyst, 2020, 145(15): 5200-5205.

    3. [3]

      RICE K M, WALKER E M, WU M Z, GILLETTE C, BLOUGH E R. J. Prev. Med. Public Health., 2014, 47(2): 74-83.RICE K M, WALKER E M, WU M Z, GILLETTE C, BLOUGH E R. J. Prev. Med. Public Health., 2014, 47(2): 74-83.

    4. [4]

      WANG Meng, FENG Wei-Yue, ZHANG Fang, WANG Bing, SHI Jun-Wen, LI Bai, CHAI Zhi-Fang, ZHAO Yu-Liang. Chin. J. Anal. Chem., 2005, 33(12): 1671-1675. 王萌, 丰伟悦, 张芳, 汪冰, 史俊稳, 李柏, 柴之芳, 赵宇亮. 分析化学, 2005, 33(12): 1671-1675.

    5. [5]

      RUMAYOR M, GALLEGO J R, RODRIGUEZ-VALDES E, DIAZ-SOMOANO M. J. Hazard. Mater., 2017, 325: 1-7.RUMAYOR M, GALLEGO J R, RODRIGUEZ-VALDES E, DIAZ-SOMOANO M. J. Hazard. Mater., 2017, 325: 1-7.

    6. [6]

      FENG Xin-Bin, SHI Jian-Bo, LI Ping, YIN Yong-Guang, JIANG Gui-Bing. Bull. Chin. Acad. Sci., 2020, 35(11): 1344-1350. 冯新斌, 史建波, 李平, 阴永光, 江桂斌. 中国科学院院刊, 2020, 35(11): 1344-1350.

    7. [7]

      GB 3838-2002. Environmental Quality Standards for Surface Water. National Standards of the People's Republic of China. 地表水环境质量标准. 中华人民共和国国家标准. GB 3838-2002.

    8. [8]

      GB 5749-2006. Standards for Drinking Water Quality. National Standards of the People’s Republic of China. 生活饮用水卫生标准.中华人民共和国国家标准. GB 5749-2006.

    9. [9]

      LEI Y Q, ZHANG F, GUAN P, GUO P R, WANG G H. New J. Chem., 2020, 44(33): 14299-14305.LEI Y Q, ZHANG F, GUAN P, GUO P R, WANG G H. New J. Chem., 2020, 44(33): 14299-14305.

    10. [10]

      ZHOU Qiao-Li, GUO Peng-Ran, PAN Jia-Chuan, LEI Yong-Qian, LIU Ning. Chin. J. Anal. Chem., 2016, 44(8): 1270-1276. 周巧丽, 郭鹏然, 潘佳钏, 雷永乾, 刘宁. 分析化学, 2016, 44(8): 1270-1276.

    11. [11]

      SOUZA J P, CERVEIRA C, MICELI T M, MORAES D P, MESKO M F, PEREIRA J S F. Food Chem., 2020, 321: 126715.SOUZA J P, CERVEIRA C, MICELI T M, MORAES D P, MESKO M F, PEREIRA J S F. Food Chem., 2020, 321: 126715.

    12. [12]

      ZHENG H, HONG J J, LUO X L, LI S, WANG M X, YANG B Y, WANG M. Microchem. J., 2019, 145: 806-812.ZHENG H, HONG J J, LUO X L, LI S, WANG M X, YANG B Y, WANG M. Microchem. J., 2019, 145: 806-812.

    13. [13]

      HE Z, LIN Y, WANG Y, HE B, HOU X D, ZHENG C B. Anal. Chem., 2020, 92(14): 9583-9590.HE Z, LIN Y, WANG Y, HE B, HOU X D, ZHENG C B. Anal. Chem., 2020, 92(14): 9583-9590.

    14. [14]

      ANNALY CRUZ SOTOLONGO, MESSINA M M, IBANEZ F J, WUILLOUD R G. Talanta, 2020, 210: 120614.ANNALY CRUZ SOTOLONGO, MESSINA M M, IBANEZ F J, WUILLOUD R G. Talanta, 2020, 210: 120614.

    15. [15]

      JIA X Y, GONG D R, ZHAO J Y, REN H Y, WANG J N, ZHANG X. Microchim. Acta, 2018, 185(4): 228.JIA X Y, GONG D R, ZHAO J Y, REN H Y, WANG J N, ZHANG X. Microchim. Acta, 2018, 185(4): 228.

    16. [16]

      ZHANG D Y, YANG S W, MA Q F, SUN J N, CHENG H Y, WANG Y C, LIU J H. Food Chem., 2020, 313: 126119.ZHANG D Y, YANG S W, MA Q F, SUN J N, CHENG H Y, WANG Y C, LIU J H. Food Chem., 2020, 313: 126119.

    17. [17]

      MA S S, HE M, CHEN B B, DENG W C, ZHENG Q, HU B. Talanta, 2016, 146: 93-99.MA S S, HE M, CHEN B B, DENG W C, ZHENG Q, HU B. Talanta, 2016, 146: 93-99.

    18. [18]

      XU Y W, LI Z H, ZHANG W, SHI J Y, ZOU X B, HUANG X W, HU X T, WANG X. Anal. Lett., 2019, 52(18): 2938-2950.XU Y W, LI Z H, ZHANG W, SHI J Y, ZOU X B, HUANG X W, HU X T, WANG X. Anal. Lett., 2019, 52(18): 2938-2950.

    19. [19]

      JEROMIYAS N, ELAIYAPPILLAI E, KUMARA S, HUANGS T, MANI V. J. Taiwan Inst. Chem. Eng., 2019, 95: 466-474.JEROMIYAS N, ELAIYAPPILLAI E, KUMARA S, HUANGS T, MANI V. J. Taiwan Inst. Chem. Eng., 2019, 95: 466-474.

    20. [20]

      RATNER N, MANDLE D. Anal. Chem., 2015, 87(10): 5148-5155.RATNER N, MANDLE D. Anal. Chem., 2015, 87(10): 5148-5155.

    21. [21]

      XIAO Qing, CHEN Lin, LI Wen-Feng, YANG Li-Qin, CAO Zhong, YU Xin-Yao, LONG Shu, HE Jing-Lin, XIAO Zhong-Liang. Chin. J. Anal. Chem., 2018, 46(12): 1886-1894. 肖情, 陈琳, 李文锋, 杨丽琴, 曹忠, 于鑫垚, 龙姝, 何婧琳, 肖忠良. 分析化学, 2018, 46(12): 1886-1894.

    22. [22]

      KOKILAVANI S, SYED A, RAJUL L, MARRAIKI N, AL-RASHED S, ELGORBANA M, THOMASA M, KHANS S. Spectrochim. Acta, Part A, 2020, 242: 118738.KOKILAVANI S, SYED A, RAJUL L, MARRAIKI N, AL-RASHED S, ELGORBANA M, THOMASA M, KHANS S. Spectrochim. Acta, Part A, 2020, 242: 118738.

    23. [23]

      LIMJ W, KIMT Y, CHOIS W, WOOM A. Food Chem., 2019, 300: 125177.LIMJ W, KIMT Y, CHOIS W, WOOM A. Food Chem., 2019, 300: 125177.

    24. [24]

      SUVARAPU L N, BAEK S O. Int. J. Anal. Chem., 2017, 2017: 3624015.SUVARAPU L N, BAEK S O. Int. J. Anal. Chem., 2017, 2017: 3624015.

    25. [25]

      LU X, ZHAO J T, LIANG X J, ZHANG L J, LIU Y R, YIN X P, Li X K, GU B H. Environ.Sci. Technol. Lett., 2019, 6(3): 165-170.LU X, ZHAO J T, LIANG X J, ZHANG L J, LIU Y R, YIN X P, Li X K, GU B H. Environ.Sci. Technol. Lett., 2019, 6(3): 165-170.

    26. [26]

      JIA X Y, ZHAO J Y, REN H Y, WANG J N, HONG Z X, ZHANG X. Talanta, 2019, 196: 592-599.JIA X Y, ZHAO J Y, REN H Y, WANG J N, HONG Z X, ZHANG X. Talanta, 2019, 196: 592-599.

    27. [27]

      AMDE M, YIN Y G, ZHANG D, LIU J F. Chem. Speciation Bioavailability, 2016, 28(1-4): 51-65.AMDE M, YIN Y G, ZHANG D, LIU J F. Chem. Speciation Bioavailability, 2016, 28(1-4): 51-65.

    28. [28]

      BELARDI R P, PAWLISZYN J. Water Qual. Res. J. Can., 1989, 24(1): 179-191.BELARDI R P, PAWLISZYN J. Water Qual. Res. J. Can., 1989, 24(1): 179-191.

    29. [29]

      KIM U J, KARTHIKRAJ R. J. Sep. Sci., 2020, 44(1): 1-64.KIM U J, KARTHIKRAJ R. J. Sep. Sci., 2020, 44(1): 1-64.

    30. [30]

      XIE X T, WANG J H, ZHENG J, HUANG J L, NI C Y, CHENG J, HAO Z P, OUYANG G F. Anal. Chim. Acta, 2018, 1029: 30-36.XIE X T, WANG J H, ZHENG J, HUANG J L, NI C Y, CHENG J, HAO Z P, OUYANG G F. Anal. Chim. Acta, 2018, 1029: 30-36.

    31. [31]

      DIEZ S, BAYONA J M. Talanta, 2008, 77(1): 21-27.DIEZ S, BAYONA J M. Talanta, 2008, 77(1): 21-27.

    32. [32]

      THONGSAW A, SANANMUANG R, UDNAN Y, ROSS G M, CHAIYASITH W C. Spectrochim. Acta, Part B, 2019, 160: 105685.THONGSAW A, SANANMUANG R, UDNAN Y, ROSS G M, CHAIYASITH W C. Spectrochim. Acta, Part B, 2019, 160: 105685.

    33. [33]

      LI J X, HE Q Q, WU L J, SUN J, ZHENG F, LI L, LIU W Y, LIU J. Microchem. J., 2020, 153: 104459.LI J X, HE Q Q, WU L J, SUN J, ZHENG F, LI L, LIU W Y, LIU J. Microchem. J., 2020, 153: 104459.

    34. [34]

      XU M W, JIN Z, YANG Z Y, RAO J J, CHEN B C. Food. Chem., 2020, 307: 125542.XU M W, JIN Z, YANG Z Y, RAO J J, CHEN B C. Food. Chem., 2020, 307: 125542.

    35. [35]

      ABUJABER F, JIMENEZ-MORENO M, BERNARDO F J G, MARTIN-DOIMEADIOS R C.Microchim. Acta, 2019, 186(7): 400.ABUJABER F, JIMENEZ-MORENO M, BERNARDO F J G, MARTIN-DOIMEADIOS R C.Microchim. Acta, 2019, 186(7): 400.

    36. [36]

      LI D, LI Y B, WANG X L. J. Environ. Sci., 2018, 68: 177-184.LI D, LI Y B, WANG X L. J. Environ. Sci., 2018, 68: 177-184.

    37. [37]

      YU Ming-Yue, YANG Xiao-Qiu, FAN Rong, ZHENG Yu-Kang, SHI Jian-Bo, ZHENG Qi. Chin. J. Anal. Chem., 2020, 48(9): 1228-1235. 余明月, 杨小秋, 樊蓉, 郑禹康, 史建波, 郑琦. 分析化学, 2020, 48(9): 1228-1235.

    38. [38]

      SONG X X, YE M D, TANG X J, WANG C J. J. Sep. Sci., 2013, 36(2): 414-420.SONG X X, YE M D, TANG X J, WANG C J. J. Sep. Sci., 2013, 36(2): 414-420.

    39. [39]

      XU Yan. Inorganic Chemistry, Zhengzhou: Henan Science and Technology Press, 2009. 徐琰. 无机化学. 郑州: 河南科学技术出版社, 2009.

    40. [40]

      MANIKANDAN R, DEEPA P N, NARAYANAN S S. Ionics, 2019, 25(3): 1387-1394.MANIKANDAN R, DEEPA P N, NARAYANAN S S. Ionics, 2019, 25(3): 1387-1394.

  • 加载中
计量
  • PDF下载量:  19
  • 文章访问数:  955
  • HTML全文浏览量:  75
文章相关
  • 收稿日期:  2021-02-20
  • 修回日期:  2021-05-27
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章